
Genomic Variations in Korean Patients with Inherited Cardiac Arrhythmia

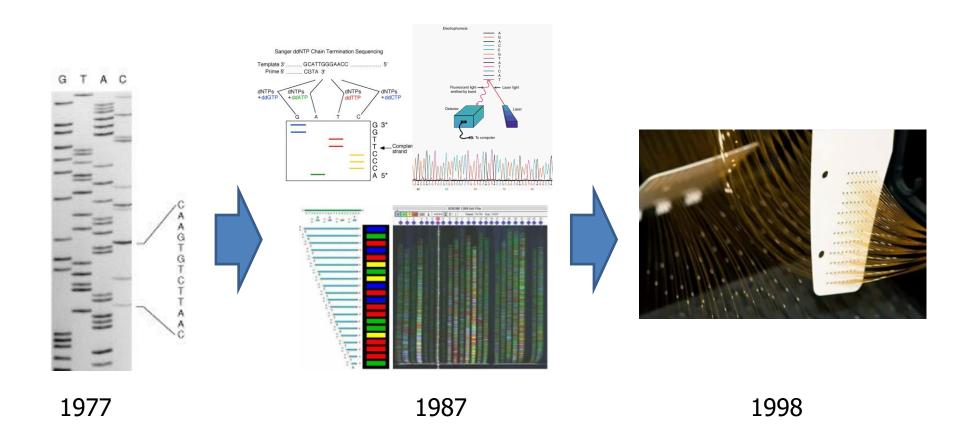
Chang-Seok Ki

Department of Laboratory Medicine & Genetics Samsung Medical Center Sungkyunkwan University School of Medicine

Timeline of Genetics/Genomics



Sequencing Revolution


- Chain termination method
 - Frederick Sanger and Alan Coulson
 - J Mol Biol 1975;94:441-8

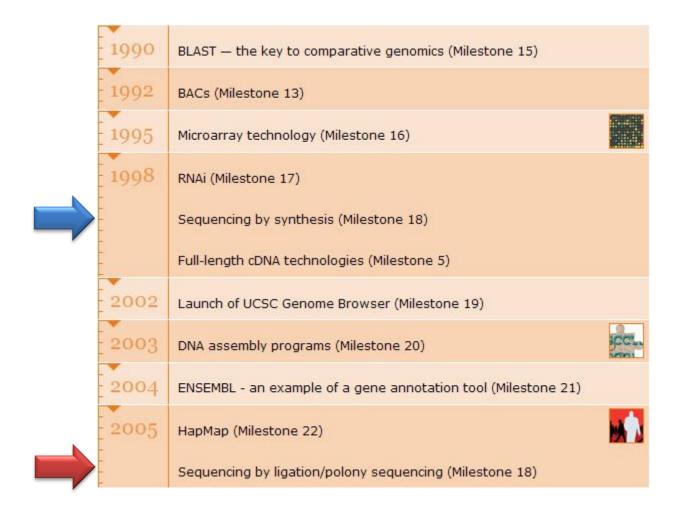
- Chemical degradation method
 - Allan Maxam and Walter Gilbert
 - Proc Natl Acad Sci 1977;74:560-4

Evolution of Sanger Sequencing

Sequencing From Bench to Clinical Lab

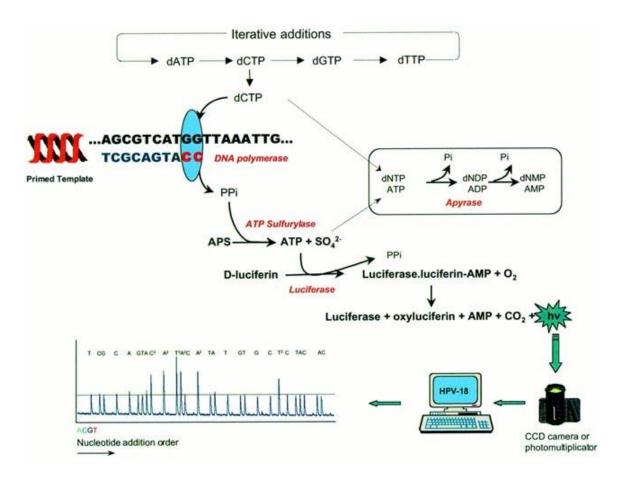
실험(Experiment)

~20 yrs

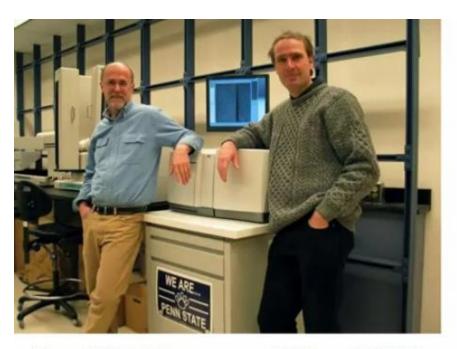

- Research fund
- For the purpose of understanding of a condition better
- No responsibilities to patients

검사(Clinical Test)

- Payment by patients
- For prevention, diagnosis, treatment as part of patient care
- Responsibilities to patients


Sanger Monopoly on Sequencing

Over more than 20 years



Novel Sequencing Techniques

Pyrosequencing (sequencing by synthesis)

The First NGS Platform

The 454 GS has a capability of 1 billion bases/day.

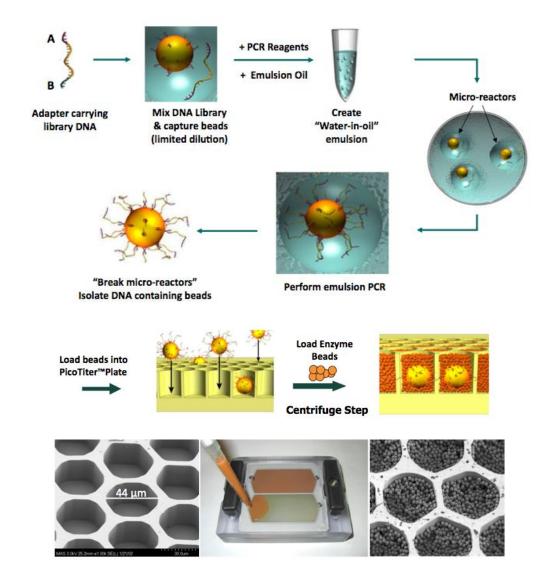
Compared that to my 200 in 1995 or 3600 in 2001.

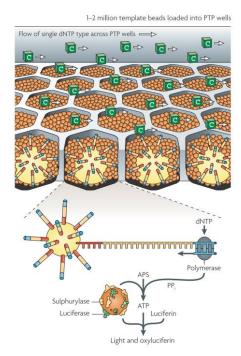
Yale Scientific

From Engineering to Entrepreneurship: Jonathan Rothberg, Ph.D. Biology '91

Joshua Ryu February 4, 2013 02:21 http://www.yalescientific.org/2013/02/from-engineering-to-entrepreneurship-ionathan-rothberg-ph-d-biology-91/

Related Articles


- Richard Conniff, B.A. '73
- Five Things You Didn't Know About Scientific Discoveries at Yale
- O&A: Seasons Turned Upside Down. What is the El Niño Effect? 0 02.Apr



Dr. Rothberg has achieved technological advances in human genome sequencing as an entrepreneur and a scientist. His ideas have improved the efficiency of agriculture and fuel production, with widespread effects. Courtesy of Jonathan Rothberg.

Dr. Jonathan Rothberg's journey in next-generation personal genome sequencing began in the neonatal intensive care unit. His newborn son Noah was completely blue from the inability to breathe properly, and Rothberg and the doctors did not know why. Noah would be okay, but little did Rothberg know that this heart-pounding experience, combined with his passion for engineering, would lead to one of the most widely used technologies for genomic sequencing and one of the most important recent inventions in medicine.

NGS Technologies: Roche 454

Individual Genome

nature

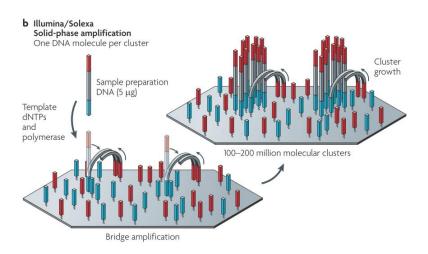
Vol 452 17 April 2008 doi:10.1038/nature06884

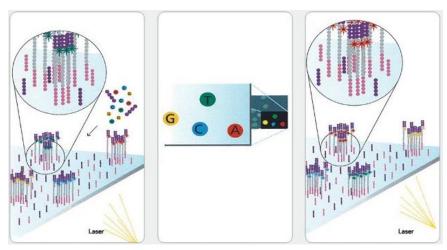
LETTERS

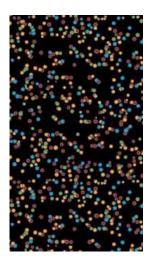
May 31, 2007

http://www.bcm.edu/news/packages/watson_genome.cfm

The complete genome of an individual by massively parallel DNA sequencing

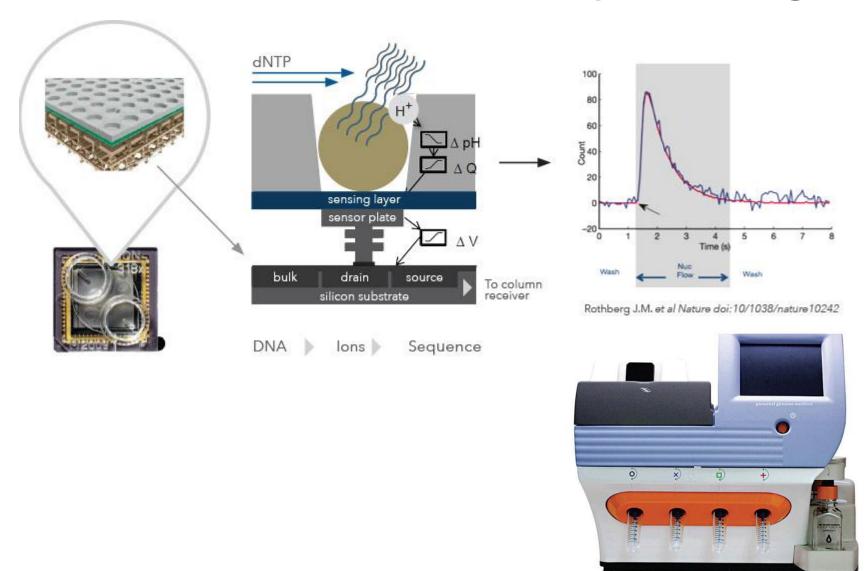

David A. Wheeler^{1*}, Maithreyan Srinivasan^{2*}, Michael Egholm^{2*}, Yufeng Shen^{1*}, Lei Chen¹, Amy McGuire³, Wen He², Yi-Ju Chen², Vinod Makhijani², G. Thomas Roth², Xavier Gomes², Karrie Tartaro²†, Faheem Niazi², Cynthia L. Turcotte², Gerard P. Irzyk², James R. Lupski^{4,5,6}, Craig Chinault⁴, Xing-zhi Song¹, Yue Liu¹, Ye Yuan¹, Lynne Nazareth¹, Xiang Qin¹, Donna M. Muzny¹, Marcel Margulies², George M. Weinstock^{1,4}, Richard A. Gibbs^{1,4} & Jonathan M. Rothberg²†

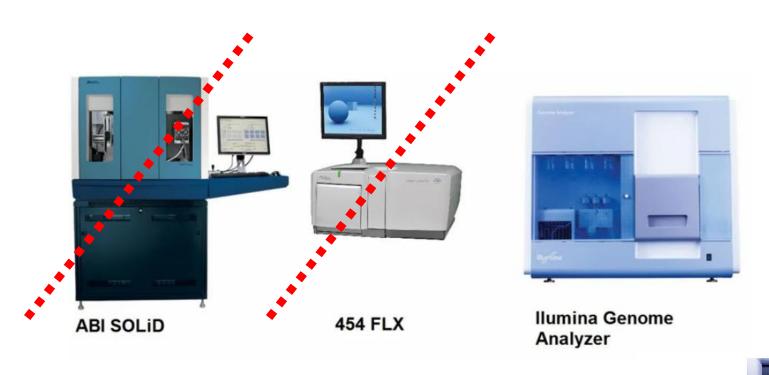



James Watson (left) receives a digital copy of his genome sequence from Jonathan Rothberg in May 2007. (Apr 16, 2008. Bio-IT World)

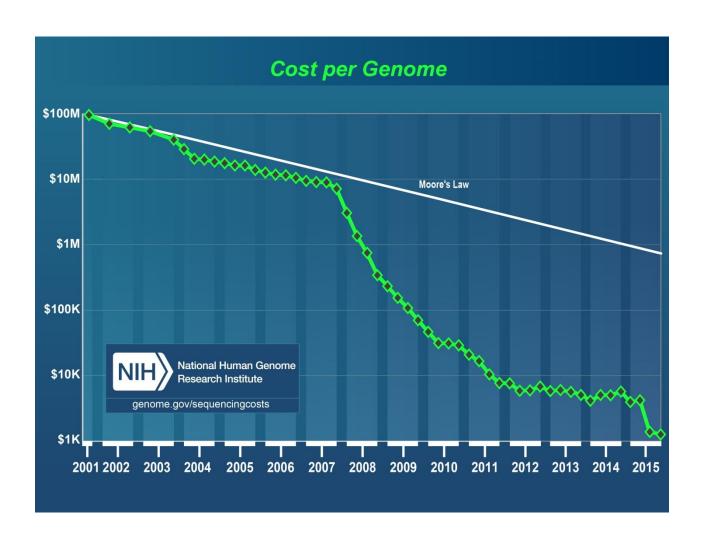
NGS Technologies: Illumina

Sequencing by Synthesis (SBS)




The Next-Generation

Semi-Conductor Sequencing


The Next-Generation

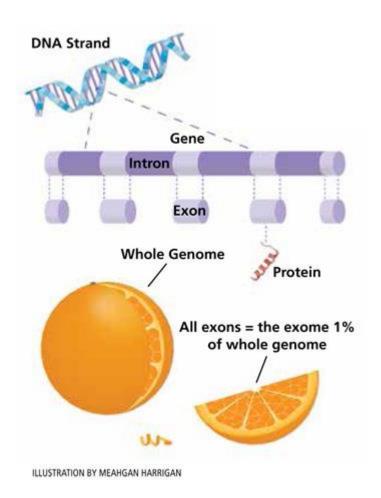
Ion Torrent

Sequencing Cost

NGS Systems

Ion Proton™ System

Ion S5™ XL System


What Can We Do with NGS?

Gene Panel Testing

Exome Sequencing

Genome Sequencing

Exome Sequencing

ACMG POLICY STATEMENT

ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing

Robert C. Green, MD, MPH^{1,2}, Jonathan S. Berg, MD, PhD³, Wayne W. Grody, MD, PhD⁴⁻⁶, Sarah S. Kalia, ScM, CGC¹, Bruce R. Korf, MD, PhD⁷, Christa L. Martin, PhD, FACMG⁸, Amy L. McGuire, JD, PhD⁹, Robert L. Nussbaum, MD¹⁰, Julianne M. O'Daniel, MS, CGC³, Kelly E. Ormond, MS, CGC¹¹, Heidi L. Rehm, PhD, FACMG^{2,12}, Michael S. Watson, PhD, FACMG¹³, Marc S. Williams, MD, FACMG¹⁴ and Leslie G. Biesecker, MD¹⁵

In clinical exome and genome sequencing, there is a potential for the recognition and reporting of incidental or secondary findings unrelated to the indication for ordering the sequencing but of medical value for patient care. The American College of Medical Genetics and Genomics (ACMG) recently published a policy statement on clinical sequencing that emphasized the importance of alerting the patient to the possibility of such results in pretest patient discussions, clinical testing, and reporting of results. The ACMG appointed a Working Group on Incidental Findings in Clinical Exome and Genome Sequencing to make recommendations about responsible management of incidental findings when patients undergo exome or genome sequencing. This Working Group conducted a year-long consensus process, including an open forum at the 2012 Annual Meeting and review by outside experts, and produced recommendations that have been approved by the ACMG Board. Specific and detailed recommendations, and the background and rationale for these recommendations, are described herein. The ACMG recommends that laboratories performing clinical sequencing seek and report mutations of the specified classes or types in the genes listed here. This evaluation and reporting should be performed for all clinical germline (constitutional) exome and genome sequencing, including the "normal" of tumor-normal subtractive analyses in all subjects, irrespective of age but excluding fetal samples. We recognize that there are insufficient data on penetrance and clinical utility to fully support these recommendations, and we encourage the creation of an ongoing process for updating these recommendations at least annually as further data are collected.

Genet Med 2013:15(7):565-574

Key Words: genome; genomic medicine; incidental findings; personalized medicine; secondary findings; sequencing; whole exome; whole genome

Incidental/Secondary Findings

Hereditary Cancer Syndromes

 Hereditary breast and ovarian cancer, Li-Fraumeni syndrome, Peutz-Jeghers syndrome, Lynch syndrome, Familial adenomatous polyposis, MYH-associated polyposis, Von Hippel-Landau syndrome, Multiple endocrine neoplasia type 1, Multiple endocrine neoplasia type 2, Familial medullary thyroid cancer, PTEN harmartoma tumor syndrome, Retinoblastoma, Hereditary paragangliomapheochromocytoma syndrome, Tuberous sclerosis complex, WT1-related Wilms tumor, Neurofibromatosis type 2

Hereditary Cardiovascular Syndromes

 Ehlers-Danlos syndrome type IV, Marfan syndrome, Loeys-Dietz syndrome, Familial thoracic aortic aneurysms and dissections, Hypertrophic cardiomyopathy, Dilated cardiomyopathy, Catecholaminergic polymorphic ventricular tachycardia, Arrhythmogenic right-ventricular cardiomyopathy, Romano-Ward long QT syndrome types 1,2,3, Brugada syndrome, Familial hypercholesterolemia

Other Syndromes

Malignant hyperthermia

56 genes

Table 1 Conditions, genes, and variants recommended for return of incidental findings in clinical sequencing

	MIM-	PMID-Gene Reviews	Typical age	_			Variants
Phenotype	disorder	entry	of onset	Gene	MIM-gene	Inheritance	to report
Hereditary breast and ovarian cancer	604370 612555	20301425	Adult	BRCA1	113705	AD	KP and EF
				BRCA2	600185		
Li–Fraumeni syndrome	151623	20301488	Child/adult	TP53	191170	AD	KP and EF
Peutz–Jeghers syndrome	175200	20301443	Child/adult	STK11	602216	AD	KP and EF
Lynch syndrome	120435	20301390	Adult	MLH1	120436	AD	KP and EF
				MSH2	609309		
				MSH6	600678		
				PMS2	600259		
Familial adenomatous polyposis	175100	20301519	Child/adult	APC	611731	AD	KP and El
MYH-associated polyposis; adenomas, multiple colorectal, FAP type 2; colorectal adenomatous polyposis, autosomal recessive, with pilomatricomas	608456 132600	23035301	Adult	MUTYH	604933	AR ^c	KP and EF
Von Hippel–Lindau syndrome	193300	20301636	Child/adult	VHL	608537	AD	KP and El
Multiple endocrine neoplasia type 1	131100	20301710	Child/adult	MEN1	613733	AD	KP and E
Multiple endocrine neoplasia type 2	171400 162300	20301434	Child/adult	RET	164761	AD	KP
Familial medullary thyroid cancerd	1552401	20301434	Child/adult	RET	164761	AD	KP
PTEN hamartoma tumor syndrome	153480	20301661	Child/adult	PTEN	601728	AD	KP and E
Retinoblastoma	180200	20301625	Child	RB1	614041	AD	KP and E
Hereditary paraganglioma– pheochromocytoma syndrome	168000 (PGL1)	20301715	Child/adult	SDHD	602690	AD	KP and E
	601650 (PGL2)			SDHAF2	613019		KP
	605373 (PGL3)			SDHC	602413		KP and E
	115310 (PGL4)			SDHB	185470		
Tuberous sclerosis complex	191100	20301399	Child	TSC1	605284	AD	KP and E
	613254			TSC2	191092		
WT1-related Wilms tumor	194070	20301471	Child	WT1	607102	AD	KP and E
Neurofibromatosis type 2	101100	20301380	Child/adult	NF2	607379	AD	KP and E
Ehlers–Danlos syndrome, vascular type	130050	20301667	Child/adult	COL3A1	120180	AD	KP and E
Marfan syndrome, Loeys–Dietz	154700	20301510	Child/adult	FBN1	134797	AD	KP and E
syndromes, and familial thoracic aortic aneurysms and dissections	609192 608967	20301312 20301299		TGFBR1	190181		
donte anediyania and dissections	610168	20301233		TGFBR2	190182		
	610380			SMAD3	603109		
	613795 611788			ACTA2	102620		
				MYLK	600922		
				MYH11	160745		

Phenotype	MIM- disorder	PMID-Gene Reviews entry	Typical age of onset	Gene	MIM-gene	Inheritance ^a	Variants to report ^b
Hypertrophic cardiomyopathy,	115197	20301725	Child/adult	МҮВРС3	600958	AD	KP and EP
dilated cardiomyopathy	192600 601494			MYH7	160760		KP
	613690			TNNT2	191045		KP and EP
	115196 608751			TNN/3	191044		KP
	612098			TPM1	191010		
	600858 301500			MYL3	160790		
	608758			ACTC1	102540		
	115200			PRKAG2	602743		
				GLA	300644	XL	KP and EP (hemi, het, hom)
				MYL2	160781	AD	KP
				LMNA	150330		KP and EP
Catecholaminergic polymorphic ventricular tachycardia	604772			RYR2	180902	AD	KP
Arrhythmogenic right-ventricular	609040	20301310	Child/adult	PKP2	602861	AD	KP and EP
cardiomyopathy	604400 610476			DSP	125647		
	607450			DSC2	125645		
	610193			TMEM43	612048		KP
				DSG2	125671		KP and EP
Romano–Ward long QT syndrome types 1, 2, and 3, Brugada	192500 613688	20301308	Child/adult	KCNQ1	607542	AD	KP and EP
syndrome	603830			KCNH2	152427		
	601144			SCN5A	600163		
Familial hypercholesterolemia	143890	No	Child/adult	LDLR	606945	SD	KP and EP
	603776	GeneReviews entry		APOB	107730	SD	KP
		Citaly		PCSK9	607786	AD	
Malignant hyperthermia	145600	20301325	Child/adult	RYR1	180901	AD	KP
susceptibility				CACNA15	114208		

*Some conditions that may demonstrate semidominant inheritance (SD) have been indicated as autosomal dominant (AD) for the sake of simplicity. Others have been labeled as X-linked (XL), *KP. known pathogenic, sequence variation is previously reported and is a recognized cause of the disorder, IEP expected pathogenic, sequence variation is previously unerported and is of the type that is expected to cause the disorder. Note: The recommendation to not report expected pathogenic variants for some genes is due to the recognition that truncating variants, the primary type of expected pathogenic variants, are not an established cause of some diseases on the list. *Although carriers may have modestly increased risk, we recommend searching only for individuals with biallelic mutations; *On the basis of evidence presented to the Working Group after the online posting of these Recommendations, the decision was made to remove one gene, NTRK1, from the recommended list.

ACMG STATEMENT

Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics

Sarah S. Kalia, ScM¹, Kathy Adelman², Sherri J. Bale, PhD³, Wendy K. Chung, MD, PhD^{4,5}, Christine Eng, MD⁶, James P. Evans, MD, PhD⁷, Gail E. Herman, MD, PhD⁸, Sophia B. Hufnagel, MD⁹, Teri E. Klein, PhD¹⁰, Bruce R. Korf, MD, PhD¹¹, Kent D. McKelvey, MD^{12,13}, Kelly E. Ormond, MS¹⁰, C. Sue Richards, PhD¹⁴, Christopher N. Vlangos, PhD¹⁵, Michael Watson, PhD¹⁶, Christa L. Martin, PhD¹⁷, David T. Miller, MD, PhD¹⁸; on behalf of the ACMG Secondary Findings Maintenance Working Group

To promote standardized reporting of actionable information from clinical genomic sequencing, in 2013, the American College of Medical Genetics and Genomics (ACMG) published a minimum list of genes to be reported as incidental or secondary findings. The goal was to identify and manage risks for selected highly penetrant genetic disorders through established interventions aimed at preventing or significantly reducing morbidity and mortality. The ACMG subsequently established the Secondary Findings Maintenance Working Group to develop a process for curating and updating the list over time. We describe here the new process for accepting and evaluating nominations for updates to the secondary findings list. We also report outcomes from six nominations received in the initial 15 months after the

process was implemented. Applying the new process while upholding the core principles of the original policy statement resulted in the addition of four genes and removal of one gene; one gene did not meet criteria for inclusion. The updated secondary findings minimum list includes 59 medically actionable genes recommended for return in clinical genomic sequencing. We discuss future areas of focus, encourage continued input from the medical community, and call for research on the impact of returning genomic secondary findings.

Genet Med advance online publication 17 November 2016

Key Words: exome sequencing; genetic testing; genome sequencing; incidental findings; secondary findings

Incidental/Secondary Findings

Hereditary Cancer Syndromes

Hereditary breast and ovarian cancer, Li-Fraumeni syndrome, Peutz-Jeghers syndrome, Lynch syndrome, Familial adenomatous polyposis, MYH-associated polyposis, Juvenile polyposis, Von Hippel-Landau syndrome, Multiple endocrine neoplasia type 1, Multiple endocrine neoplasia type 2, Familial medullary thyroid cancer, PTEN harmartoma tumor syndrome, Retinoblastoma, Hereditary paraganglioma-pheochromocytoma syndrome, Tuberous sclerosis complex, WT1-related Wilms tumor, Neurofibromatosis type 2

Hereditary Cardiovascular Syndromes

 Ehlers-Danlos syndrome type IV, Marfan syndrome, Loeys-Dietz syndrome, Familial thoracic aortic aneurysms and dissections, Hypertrophic cardiomyopathy, Dilated cardiomyopathy, Catecholaminergic polymorphic ventricular tachycardia, Arrhythmogenic right-ventricular cardiomyopathy, Romano-Ward long QT syndrome types 1,2,3, Brugada syndrome, Familial hypercholesterolemia

Other Syndromes

Malignant hyperthermia, Wilson disease, Ornithine transcarbamylase deficiency

Table 1 ACMG SF v2.0 genes and associated phenotypes recommended for return of secondary findings in clinical sequencing

Phenotype	MIM disorder	PMID Gene Reviews entry	Typical age of onset	Gene	MIM gene	Inheritance ^a	Variants to report ^b
Hereditary breast and ovarian cancer	604370 612555	20301425	Adult	BRCA1 BRCA2	113705 600185	AD	KP and EP
Li-Fraumeni syndrome	151623	20301488	Child/adult	TP53	191170	AD	KP and EP
Peutz-Jeghers syndrome	175200	20301443	Child/adult	STK11	602216	AD	KP and EP
Lynch syndrome	120435	20301390	Adult	MLH1 MSH2 MSH6 PMS2	120436 609309 600678 600259	AD	KP and EP
Familial adenomatous polyposis	175100	20301519	Child/adult	APC	611731	AD	KP and EP
MYH-associated polyposis; adenomas, multiple colorectal, FAP type 2; colorectal adenomatous polyposis, autosomal recessive, with pilomatricomas	608456 132600	23035301	Adult	MUTYH	604933	AR¢	KP and EP
Juvenile polyposis	174900	20301642	Child/adult	BMPR1A SMAD4	601299 600993	AD	KP and EP
Von Hippel–Lindau syndrome	193300	20301636	Child/adult	VHL	608537	AD	KP and EP
Multiple endocrine neoplasia type 1	131100	20301710	Child/adult	MEN1	613733	AD	KP and EP
Multiple endocrine neoplasia type 2	171400 162300	20301434	Child/adult	RET	164761	AD	KP
Familial medullary thyroid cancer ^d	1552401	20301434	Child/adult	RET	164761	AD	KP
PTEN hamartoma tumor syndrome	153480	20301661	Child/adult	PTEN	601728	AD	KP and EP
Retinoblastoma	180200	20301625	Child	RB1	614041	AD	KP and EP
Hereditary paraganglioma- pheochromocytoma syndrome	168000 (PGL1) 601650 (PGL2) 605373 (PGL3) 115310 (PGL4)	20301715	Child/adult	SDHD SDHAF2 SDHC SDHB	602690 613019 602413 185470	AD	KP and EP KP KP and EP
Tuberous sclerosis complex	191100 613254	20301399	Child	TSC1 TSC2	605284 191092	AD	KP and EP
WT1-related Wilms tumor	194070	20301471	Child	WT1	607102	AD	KP and EP
Neurofibromatosis type 2	101100	20301380	Child/adult	NF2	607379	AD	KP and EP
Ehlers-Danlos syndrome, vascular type	130050	20301667	Child/adult	COL3A1	120180	AD	KP and EP
Marfan syndrome, Loeys-Dietz syndromes, and familial thoracic aortic aneurysms and dissections	154700 609192 608967 610168 610380 613795 611788	20301510 20301312 20301299	Child/adult	FBN1 TGFBR1 TGFBR2 SMAD3 ACTA2 MYH11	134797 190181 190182 603109 102620 160745	AD	KP and EP
Hypertrophic cardiomyopathy, dilated cardiomyopathy	115197 192600 601494 613690 115196 608751 612098 600858 301500 608758 115200	20301725	Child/adult	MYBPC3 MYH7 TNNT2 TNNI3 TPM1 MYL3 ACTC1 PRKAG2 GLA MYL2 LMNA	600958 160760 191045 191044 191010 160790 102540 602743 300644 160781 150330	AD XL AD	KP and EP KP KP and EP KP KP and EP (hemi, het, hom) KP KP and EP
Catecholaminergic polymorphic ventricular tachycardia	604772			RYR2	180902	AD	KP

59 genes

Phenotype	MIM disorder	PMID Gene Reviews entry	Typical age of onset	Gene	MIM gene	Inheritance ^a	Variants to report ^b
Arrhythmogenic right ventricular cardiomyopathy	609040 604400 610476 607450 610193	20301310	Child/adult	PKP2 DSP DSC2 TMEM43 DSG2	602861 125647 125645 612048 125671	AD	KP and EP KP KP and EP
Romano-Ward long-QT syndrome types 1, 2, and 3, Brugada syndrome	192500 613688 603830 601144	20301308	Child/adult	KCNQ1 KCNH2 SCN5A	607542 152427 600163	AD	KP and EP
Familial hypercholesterolemia	143890 603776	No GeneReviews entry	Child/adult	LDLR APOB PCSK9	606945 107730 607786	SD SD AD	KP and EP KP
Wilson disease	277900	20301685	Child	ATP7B	606882	ARc	KP and EP
Ornithine transcarbamylase deficiency	311250	24006547	Newborn (male), child (female)	OTC	300461	XL	KP and EP (hemi, het, hom)
Malignant hyperthermia susceptibility	145600	20301325	Child/adult	RYR1 CACNA15	180901 114208	AD	KP

Some conditions that may demonstrate semidominant inheritance have been indicated as autosomal-dominant (AD) for the sake of simplicity. Others have been labeled as X-linked (XU). *Ye's, known pathogenic, sequence variation is previously reported and and is a recognized cause of the disorder; FP: expected pathogenic, sequence variation is previously unreported and is of the type that is expected to cause the disorder. Note: The recommendation to not report expected pathogenic variants for some genes is due to the recognition that truncating variants, the primary type of expected pathogenic variants, are not an established cause of some diseases on the list. *We recommend searching only for individuals with biallelic mutations.

Frequency and spectrum of actionable pathogenic secondary findings in 196 Korean exomes

Mi-Ae Jang, MD^{1,4}, Sang-Heon Lee, BS^{2,3}, Namshin Kim, PhD^{2,3} and Chang-Seok Ki, MD, PhD¹

Purpose: One of the biggest challenges of exome and genome sequencing in the era of genomic medicine is the identification and reporting of secondary findings. In this study we investigated the frequency and spectrum of actionable pathogenic secondary findings in Korean exomes.

Methods: Data from 196 Korean exomes were screened for variants from a list of 56 genes recommended by the American College of Medical Genetics and Genomics (ACMG) for return of secondary findings. Identified variants were classified according to the evidence-based guidelines reached by a joint consensus of the ACMG and the Association for Molecular Pathology.

Results: Among the 196 exomes, which were from 100 healthy controls and 96 patients with suspected genetic disorders, 11

variants in 13 individuals were found to be pathogenic or likely pathogenic. We estimated that the frequency of actionable pathogenic secondary findings was 7% for the control subjects (7/100) and 6% for the patients with disease (6/96). For one autosomal-recessive disease, four individuals exhibited either one pathogenic or one likely pathogenic variant of the *MUTYH* gene, leading to a carrier frequency of 2% (4/196).

Conclusion: Secondary findings are not uncommon in Korean exomes.

Genet Med advance online publication 9 April 2015

Key Words: exome; Korean; secondary finding; variant

Table 1 Filtering and classification of variants by study group

-	Group A	Group B	
Classification	(control)	(disease)	Total
Variants (n)			
Total variants for 56 genes	2,309	2,100	4,409
After exclusion of nongenic or intronic variants	509	494	1,003
Variants listed as disease-causing in the HGMD	33	37	70
Any novel disruptive variants	2	4	6
After application of evidence guideline			
Pathogenic variants (A)	3ª	2ª	5⁵
Likely pathogenic variants (B)	4	4	8
Uncertain significance variants	28	35	63
Sum of pathogenic or likely pathogenic variants (A + B)	7	6	13 ^b
Participants (n)			
Participants with pathogenic variants ^c (C)	1	1	2
Participants with likely pathogenic variants ^c (D)	6	5	11
Sum of participants with pathogenic or likely pathogenic variants (C + D)	7	6	13

Group A comprised 100 unrelated healthy individuals from the Korean Genome and Epidemiology Study. Group B consisted of 96 unrelated Korean patients with suspected Mendelian disorders who underwent exome sequencing.

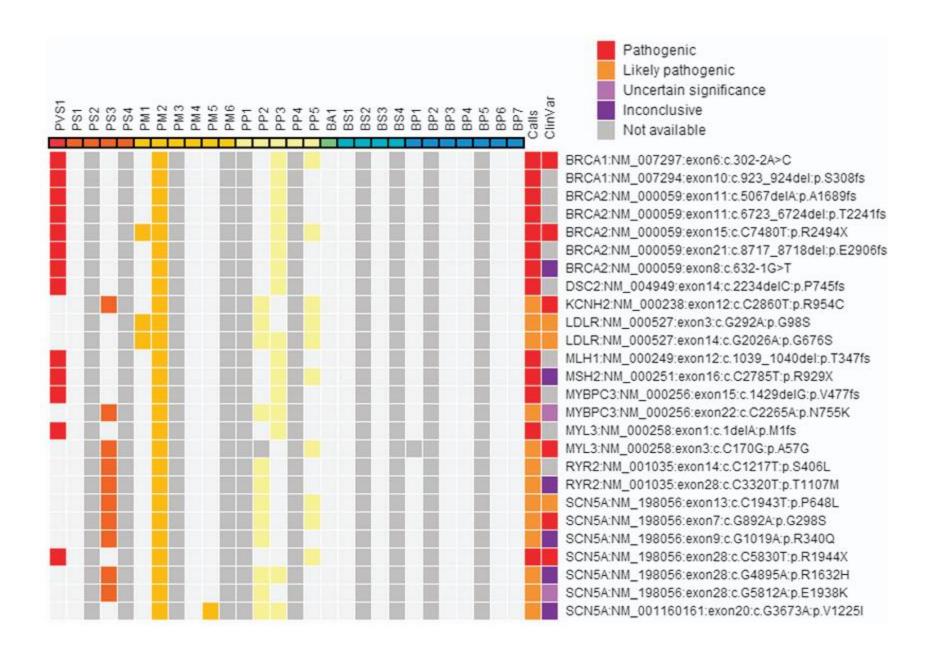
HGMD, the Human Gene Mutation Database, professional version for release 2014.1.

Table 2 Pathogenic or likely pathogenic variants according to the evidence-based guidelines in ACMG reportable genes

Category	Gene	Variant	dbSNP	HGMD accession no.	Disease association per the ACMG	Frequency in A (control)	Frequency. in B (disease)
Р	BRCA2	NM_000059.3:c.1399A>T NP_000050.2:p.Lys467*	rs80358427	CM021955	Hereditary breast and ovarian cancer	1/100	1/96
Р	MUTYH	NM_001128425.1:c.799C>T NP_001121897.1:p.Gln267*	NA	CM077607	MYH-associated polyposis	1/100	0/96
Р	MUTYH	NM_001128425.1:c.934-2A>G	rs77542170	CS04822	MYH-associated polyposis	2/100	1/96
LP	BRCA1	NM_007294.3:c.3629dupA NP_009225.1:p.Ser1211Valfs*8	NA	NA	Hereditary breast and ovarian cancer	1/100	0/96
LP	DSP	NM_004415.2:c.269A>G NP_004406.2:p.Gln90Arg	rs188516326	CM063959	Arrhythmogenic right ventricular cardiomyopathy	1/100	0/96
LP	MYBPC3	NM_000256.3:c.1000G>A NP_000247.2:p.Glu334Lys	NA	CM073211	Hypertrophic cardiomyopathy, dilated cardiomyopathy	0/100	1/96
LP	MYL3	NM_000258.2:c.170C>G NP_000249.1:p.Ala57Gly	rs139794067	CM14210	Hypertrophic cardiomyopathy, dilated cardiomyopathy	0/100	2/96
LP	RYR1	NM_000540.2:c.5701C>T NP_000531.2:p.Gln1901*	NA	NA	Malignant hyperthermia susceptibility	0/100	1/96
LP	RYR2	NM_001035.2:c.1217C>T NP_001026.2:p.Ser406Leu	NA	CM126236	Catecholaminergic polymorphic ventricular tachycardia	0/100	1/96
LP	SCN5A	NM_198056.2:c.3250G>A NP_932173.1:p.Gly1084Ser	rs199473190	CM085685	Long QT syndrome	1/100	0/96
LP	TP53	NM_000546.5:c.91G>A NP_000537.3:p.Val31lle	rs201753350	CM074603	Li-Fraumeni syndrome	3/100	0/96

ACMG, the American College of Medical Genetics and Genomics; HGMD, the Human Gene Mutation Database, professional version for release 2014.1; LP, likely pathogenic variant; NA, not available; P, pathogenic variant; dbSNP, single-nucleotide polymorphism database.

ORIGINAL ARTICLE


Findings of a 1303 Korean whole-exome sequencing study

www.nature.com/emm

Soo Heon Kwak^{1,11}, Jeesoo Chae^{2,3,11}, Seongmin Choi^{4,11}, Min Jung Kim^{2,3}, Murim Choi³, Jong-Hee Chae⁵, Eun-hae Cho⁶, Tai ju Hwang⁷, Se Song Jang^{2,3}, Jong-Il Kim^{2,3,8,11}, Kyong Soo Park^{1,9,10,11} and Yung-Jue Bang¹

Ethnically specific data on genetic variation are crucial for understanding human biology and for clinical interpretation of variant pathogenicity. We analyzed data obtained by deep sequencing 1303 Korean whole exomes; the data were generated by three independent whole exome sequencing projects (named the KOEX study). The primary focus of this study was to comprehensively analyze the variant statistics, investigate secondary findings that may have clinical actionability, and identify loci that should be cautiously interpreted for pathogenicity. A total of 495 729 unique variants were identified at exonic regions, including 169 380 nonsynonymous variants and 4356 frameshift insertion/deletions. Among these, 76 607 were novel coding variants. On average, each individual had 7136 nonsynonymous single-nucleotide variants and 74 frameshift insertion/deletions. We classified 13 pathogenic and 13 likely pathogenic variants in 56 genes that may have clinical actionability according to the guidelines of the American College of Medical Genetics and Genomics, and the Association for Molecular Pathology. The carrier frequency of these 26 variants was 2.46% (95% confidence interval 1.73-3.46). To identify loci that require cautious interpretation in clinical sequencing, we identified 18 genes that are prone to sequencing errors, and 671 genes that are highly polymorphic and carry excess nonsynonymous variants. The catalog of identified variants, its annotation and frequency information are publicly available (http://koex.snu.ac.kr). These findings should be useful resources for investigating ethnically specific characteristics in human health and disease.

Experimental & Molecular Medicine (2017) 49, e356; doi:10.1038/emm.2017.142; published online 14 July 2017

ORIGINAL ARTICLE

Cardiovascular Disorders

http://dx.doi.org/10.3346/jkms.2013.28.7.1021 • *J Korean Med Sci 2013; 28: 1021-1026*

Genetic Mutation in Korean Patients of Sudden Cardiac Arrest as a Surrogating Marker of Idiopathic Ventricular Arrhythmia

Myoung Kyun Son,¹ Chang-Seok Ki,² Seung-Jung Park,¹ June Huh,³ June Soo Kim,¹ and Young Keun On¹

¹Division of Cardiology, Department of Medicine, ²Department of Laboratory Medicine and Genetics, and ³Division of Pediatric Cardiology, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Received: 23 November 2012 Accepted: 30 April 2013

Address for Correspondence: Young Keun On, MD

Cardiac and Vascular Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro,

Gangnam-gu, Seoul 135-710, Korea Tel: +82.2-3410-3419, Fax: +82.2-3410-3849

E-mail: oykmd123@gmail.com

Mutation or common intronic variants in cardiac ion channel genes have been suggested to be associated with sudden cardiac death caused by idiopathic ventricular tachyarrhythmia. This study aimed to find mutations in cardiac ion channel genes of Korean sudden cardiac arrest patients with structurally normal heart and to verify association between common genetic variation in cardiac ion channel and sudden cardiac arrest by idiopathic ventricular tachyarrhythmia in Koreans. Study participants were Korean survivors of sudden cardiac arrest caused by idiopathic ventricular tachycardia or fibrillation. All coding exons of the SCN5A, KCNQ1, and KCNH2 genes were analyzed by Sanger sequencing. Fifteen survivors of sudden cardiac arrest were included. Three male patients had mutations in SCN5A gene and none in KCNQ1 and KCNH2 genes. Intronic variant (rs2283222) in KCNQ1 gene showed significant association with sudden cardiac arrest (OR 4.05). Four male sudden cardiac arrest survivors had intronic variant (rs11720524) in SCN5A gene. None of female survivors of sudden cardiac arrest had SCN5A gene mutations despite similar frequencies of intronic variants between males and females in 55 normal controls. Common intronic variant in KCNQ1 gene is associated with sudden cardiac arrest caused by idiopathic ventricular tachyarrhythmia in Koreans.

Table 1. Clinical characteristics of patients who survived sudden cardiac arrest caused by idiopathic ventricular tachyarrhythmia

Patient No.	Sex	Age (yr)	SCN5A gene mutation	Family History of SCD	Rhythm at cardiac event	Rest ECG abnormality	TTE	CAG
1	М	35	No	Yes (uncle)	VT	NI	NI	NI
2	M	18	No	No	VF/VT	NI	NI	NI
3	M	50	c.3578G > A (p.R1193Q)	No	VF/VT	NI	NI	NI
4	M	35	No	No	VF	NI	NI	NI
5	M	38	c.5812G > A (p.E1938K)	No	VF	LAFB	NI	NI
6	M	66	No	No	VT	APC	NI	NI
7	M	18	No	No	VT	LAFB	NI	NI
8	M	39	No	No	VF	NI	NI	NI
9	F	50	No	No	VT	NI	NI	NI
10	M	35	No	No	VF	NI	NI	NI
11	M	37	No	No	VF	NI	NI	NI
12	F	50	No	No	VF	NI	NI	NI
13	F	34	No	No	VF	NI	NI	NI
14	M	45	c.3578G > A (p.R1193Q)	No	VF/VT	NI	NI	NI
15	F	46	No	No	VT	NI	NI	NP

APC, atrial premature complex; CAG, coronary angiography; ECG, electrocardiography; LAFB, left anterior fascicular block; NI, normal; NP, not performed; SCD, sudden cardiac death; TTE, transthoracic echocardiography; VF, ventricular fibrillation; VT, ventricular tachycardia.

www.nature.com/jhg

ORIGINAL ARTICLE

Identification of pathogenic variants in genes related to channelopathy and cardiomyopathy in Korean sudden cardiac arrest survivors

Ju Sun Song^{1,7}, Jong-Sun Kang^{2,7}, Young-Eun Kim³, Seung-jung Park⁴, Kyoung-Min Park⁴, June Huh⁵, June Soo Kim⁴, Hana Cho⁶, Chang-Seok Ki¹ and Young Keun On⁴

Pathogenic variants in genes related to channelopathy and cardiomyopathy are the most common cause of sudden unexplained cardiac death. However, few reports have investigated the frequency and/or spectrum of pathogenic variants in these genes in Korean sudden cardiac arrest survivors. This study aimed to investigate the causative genetic variants of cardiac-associated genes in Korean sudden cardiac arrest survivors. We performed exome sequencing followed by filtering and validation of variants in 100 genes related to channelopathy and cardiomyopathy in 19 Korean patients who survived sudden cardiac arrest. Five of the 19 patients (26.3%) had either a pathogenic variant or a likely pathogenic variant in MYBPC3 (n = 1), MYH7 (n = 1), RYR2 (n = 2), or TNNT2 (n = 1). All five variants were missense variants that have been reported previously in patients with channelopathies or cardiomyopathies. Furthermore, an additional 12 patients (63.2%) had more than one variant of uncertain significance. In conclusion, pathogenic or likely pathogenic variants in genes related to channelopathy and cardiomyopathy are not uncommon in Korean sudden cardiac arrest survivors and cardiomyopathy-related genes should be included in the molecular diagnosis of sudden cardiac arrest in Korea.

Journal of Human Genetics (2017) 62, 615–620; doi:10.1038/jhg.2017.8; published online 16 February 2017

Table 1 Demographic and clinical characteristics of the 19 sudden cardiac arrest survivors

Case no.	Sex	Age at SCA, years	Smoking	Medical history	Diagnosis	Family history
SCAS-1	M	66	Ex-smoker	CKD (Cr 1.8)	Idiopathic VF	CHF—daughter
SCAS-2	M	48	Current	NS	Brugada phenocopy	None
SCAS-3	M	60	No	Hypertension	Idiopathic VF	SCA—father
SCAS-4	M	35	No	NS	Idiopathic VF	No
SCAS-5	M	18	No	NS	Long QT syndrome	SCA—father
SCAS-6	M	35	Current	NS	Idiopathic VF	None
SCAS-7	M	18	No	NS	CPVT	None
SCAS-8	M	39	No	NS	Idiopathic VF	None
SCAS-9	F	50	No	Hypertension	Idiopathic VF	None
SCAS-10	M	37	Ex-smoker	NS	Idiopathic VF	None
SCAS-11	F	50	No	NS	Idiopathic VF	None
SCAS-12	F	34	No	NS	Idiopathic VF	None
SCAS-13	M	21	Current	NS	Idiopathic VF	None
SCAS-14	M	12	No	NS	HCMP	None
SCAS-15	M	22	Current	NS	Brugada syndrome	SCA—maternal side
SCAS-16	M	8	No	NS	CPVT	None
SCAS-17	M	34	No	NS	Complete AV block	None
SCAS-18	M	33	No	NS	Complete AV block	None
SCAS-19	М	34	Ex-smoker	Hypertension	Idiopathic VF	AMI—father

Abbreviations: AMI, acute myocardiac infarction; AV, atrioventricular; CHF, congestive heart failure; CKD, chronic kidney disease; CPVT, catecholaminergic polymorphic ventricular tachycardia; F, female; HCMP, hypertrophic cardiomyopathy; M, male; NS, not significant; SCA, sudden cardiac arrest; SCAS, sudden cardiac arrest survivor; VF, ventricular fibrillation.

Table 3 Variants in the 19 sudden cardiac arrest survivors classified according to the 2015 American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines

Case no.	Gene	Reference sequence	Nucleotide change	Protein change	HGMD phenotype	HGMD variant	ACMG classification	MAF (ExAC)	MAF (KRGDB)
SCAS-1	мүн7	NM 000257.2	c.4130C>T	p.Thr1377Met	нсм	DM	Likely pathogenic	0.00000	0.00000
30A3-1	MIIII	NW_000237.2	C.4130C > 1	p.11111377 Met	HOW	DIVI	variant	0.00000	0.00000
SCAS-2	MYBPC3	NM_000256.3	c.1000G > A	p.Glu334Lys	нсм	DM	Likely pathogenic variant	0.00030	0.00400
SCAS-3	TTN	NM_133378.4	c.60256G>C	p.Asp20086His	_	_	VUS	0.00004	0.00000
SCAS-4	DSG2	NM_001943.3	c.166G > A	p.Val56Met	ARVC	DM?	VUS	0.00187	0.00160
	PKP2	NM_004572.3	c.2150C>T	p.Pro717Leu	ARVC	DM?	VUS	0.00013	0.00720
	PKP2	NM_004572.3	c.1546_1584del	p.Lys516_Thr528del	_	_	VUS	0.00000	0.00000
SCAS-5				Not detect	ed				
SCAS-6	ANK2	NM_001148.4	c.9689C>T	p.Thr3230Met	_	_	VUS	0.00001	0.00000
	CTNNA3	NM_013266.2	c.1853A>G	p.His618Arg	_	_	VUS	0.00002	0.00080
	SCN2B	NM_004588.4	c.250C>T	p.Arg84Cys	_	_	VUS	0.00005	0.00000
	TCAP	NM_003673.3	c.145G > A	p.Glu49Lys	DCM	DM?	VUS	0.00008	0.00160
SCAS-7	DSP	NM_004415.2	c.4943A>G	p.Gln1648Arg	_	_	VUS	0.00016	0.00000
	RYR2	NM_001035.2	c.14311G>A	p.Val4771lle	PVT	DM	Likely pathogenic	0.00000	0.00000
							variant		
	TTN	NM_133378.4	c.4874C>G	p.Ser1625Cys	_	_	VUS	0.00004	0.00080
	TTN	NM_133378.4	c.53585G > A	p.Cys17862Tyr	_	_	VUS	0.00006	0.00080
SCAS-8	CTNNA3	NM_013266.2	c.2260A>C	p.Asn754His	_	_	VUS	0.00000	0.00000
SCAS-9				Not detect	ed				
SCAS-10	CTNNA3	NM_013266.2	c.1850T>C	p.lle617Thr	_	_	VUS	0.00026	0.00560
	RBM20	NM_001134363.1	c.2089G>A	p.Gly697Arg	_	_	VUS	0.00066	0.00080
	TTN	NM_133378.4	c.84049T>G	p.Phe28017Val	_	_	VUS	0.00000	0.00000
SCAS-11	MYBPC3	NM_000256.3	c.1519G>A	p.Gly507Arg	HCM	DM?	VUS	0.00068	0.00400
	PRDM16	NM_022114.3	c.3461A>C	p.Glu1154Ala	_	_	VUS	0.00010	0.00560
	RYR2	NM_001035.2	c.12334G>A	p.Asp4112Asn	_	_	VUS	0.00000	0.00000
	TTN	NM_133378.4	c.43675G>C	p.Val14559Leu	_	_	VUS	0.00000	0.00080
SCAS-12	TNNI3	NM_000363.4	c.235C>T	p.Arg79Cys	_	_	VUS	0.00039	0.00400
	TTN	NM_133378.4	c.8069C>T	p.Thr2690Ile	_	_	VUS	0.00059	0.00480
	TTN	NM_133378.4	c.22100A>G	p.Asn7367Ser	_	_	VUS	0.00002	0.00000
SCAS-13	RYR2	NM_001035.2	c.4840C>T	p.Arg1614Cys	_	_	VUS	0.00005	0.00000
	TTN	NM_133378.4	c.27403G > A	p.Glu9135Lys	_	_	VUS	0.00000	0.00160
	TTN	NM_133378.4	c.89405C>A	p.Thr29802Asn	_	_	VUS	0.00005	0.00160
SCAS-14	TNNT2	NM_001001430.2	c.274C > T	p.Arg92Trp	HCM	DM	Pathogenic variant	0.00001	0.00000
SCAS-15	TTN	NM_133378.4	c.81041C>T	p.Ser27014Phe	_	_	VUS	0.00000	0.00000
SCAS-16	RYR2	NM_001035.2	c.6737C>T	p.Ser2246Leu	PVT	DM	Pathogenic variant	0.00000	0.00000
CAS-17	PKP2	NM_004572.3	c.2150C>T	p.Pro717Leu	ARVC	DM?	VUS	0.00013	0.00720
	TTN	NM_133378.4	c.34052A>G	p.Asp11351Gly	_	_	VUS	0.00000	0.00000
	TTN	NM_133378.4	c.37246G>C	p.Gly12416Arg	_	_	VUS	0.00004	0.00000
	TTN	NM_133378.4	c.47690C>A	p.Ala15897Glu	_	_	VUS	0.00000	0.00000
	TNNI3K	NM_015978.2	c.2225_2227delCTT	p.Ser745del	_	_	VUS	0.00026	0.00400
SCAS-18	TTN	NM_133378.4	c.19712G>A	p.Arg6571GIn	_	_	VUS	0.00002	0.00080
	TTN	NM_133378.4	c.48691G>A	p.Ala16231Thr	_	_	VUS	0.00003	0.00080
SCAS-19	SCN5A	NM_198056.2	c.5851G>A	p.Val1951Met	AF	DM	VUS	0.00008	0.00800

Abbreviations: ACMG, American College of Medical Genetics and Genomics; AF, atrial fibrillation; ARVC, arrhythmogenic right ventricular cardiomyopathy; DCM, dilated cardiomyopathy; DM, disease-causing mutation; ExAC, Exome Aggregation Consortium; HCM, hypertrophic cardiomyopathy; HGMD, human gene mutation database; KRGDB, Korean Reference Genome Database; MAF, minor allele frequency; PVT, polymorphic ventricular tachycardia; VUS, variant of uncertain significance. Rows in bold are pathogenic or likely pathogenic variants.

Ann Clin Lab Sci. 2017 Aug;47(4):481-490.

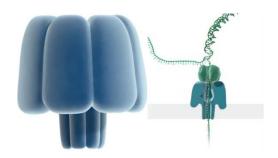
Ethnic Differences in Genetic Ion Channelopathies Associated with Sudden Cardiac Death: A Systematic Review and Meta-Analysis.

Kong T^{1,2,3}, Feulefack J¹, Ruether K⁴, Shen F^{1,2}, Zheng W², Chen XZ², Sergi C^{5,6}.

Author information

Abstract

BACKGROUND AND AIMS: Reports of allele frequencies encoding ion channel, or their interacting proteins associated with sudden cardiac death among different ethnic groups have been inconsistent. Here, we aimed to characterize the distribution of these genes and their alleles among various ethnicities through meta-analysis.


METHODS: We conducted a systematic review and meta-analysis to assess the mean allele frequencies of channelopathy genes <u>SCN5A</u>, <u>NOS1AP, KCNH2, KCNE1</u>, and <u>KCNQ1</u> among the Black, Caucasian, Asian, and Hispanic ethnicities. Searches in PubMed, Google Scholar, and Web of Science resulted in 18 reports published before July 2015 that met the eligible criteria. Allele frequencies were averaged by weight, and pooled values were calculated by inverse variance. Fixed-effects and random-effects models were used to pool effect sizes within each study and across different studies, respectively. Moreover, to extend our findings, we used sequenced genomic data from the Exome Aggregation Consortium to compare allele frequencies between different ethnicities.

RESULTS: Meta-analysis of published studies supports that Asians had the highest overall mean allele frequencies of NOS1AP (0.36%, 95% CI: 0.30, 0.43; P<0.001), and SCN5A frequencies (0.17%, 95% CI: 0.07, 0.27, P=0.001), and whereas Caucasians had the highest KCNH2 frequency (0.21%, 95% CI: 0.16, 0.25; P<0.001), and Hispanics the highest KCNQ1 frequency (0.16%). Analysis of the Exome Aggregation Consortium also provided consistent data in agreement the meta-analysis.

CONCLUSION: Overall, Asians carried the most alleles of genes associated with sudden cardiac death. The meta-analysis reveals significant differences in allele distribution of channel opathy-associated genes among different ethnic groups.

22

MinION MkI: portable, real time biological analyses

Minion MinION

