KHRS 2023 – Arrhythmia in adult congenital heart disease

Risk stratification for VT Sudden cardiac death in ACHD

Ja-Kyoung Yoon, MD

Department of Pediatrics, Sejong general hospital, South Korea

The Korean Heart rhythm COI Disclosure

The authors have no financial conflicts of interest to disclose concerning the presentation

Epidemiology of SCD in ACHD

- SCD is one of the leading cause of death in ACHD
 - along with progressive heart failure, peri-operative mortality
 - account for 20~25% of death in ACHD population
- Incidence rate : 0.3-2.7 / 1,000 PYs (20~30-fold higher than general population)
- Highest incidence in mid-30s to 40s (cf. after 50s in simple forms of CHD)
- Risk of SCD increases with complexity of the disease
 - highest risk : ToF, TGA, cyanotic heart disease, Ebstein anomaly, Fontan circulation
 - mild disease still have a non-negligible risk of SCD
- ACHD patients were younger and more often had a shockable initial rhythm

Khairy P et al. EHJ 2022 (PMID 35302168)

Vehmeijer JT et al. Int J Cardiol. 2019 (PMID 30414749)

ACHD-ICD recommendations

-Based on expert opinion, observational data, and extrapolation from other patient groups (eg. acquired NICMP)

	PACES/HRS 2014	ESC 2015	ACC/AHA/HRS 2017	EHRA 2018	ESC 2020	PACES 2021
Sudden cardiac arrest due to VF/VT after evaluation to define cause and exclude reversible triggers	I.	I	I	1	I.	I.
Unstable VT after electrophysiologic and hemodynamic evaluation	I.	L	I	1	I.	I.
LVEF <35% with biventricular physiology and NYHA Classes II–III	I.	T	llb	1	lla	
Unexplained syncope with LVEF <35% or VT/VF at EPS	llb	lla	lla	П	lla	lla
Tetralogy of Fallot with clinical VT or multiple risk factors	lla	lla	lla	П	lla	
Single/systemic right ventricular dysfunction with NSVT, NYHA Classes II–III	llb	llb	llb	П	llb	llb
Non-hospitalized CHD awaiting transplant	llb			П		
Life expectancy ,1 year; Incessant VT/VF; NYHA Class IV; severe psychiatric illness	ш		ш	ш		ш

Khairy P et al. EHJ 2022 (PMID 35302168)

Can ACHD-ICD guidelines predict SCD? : Suboptimal discrimination of SCD

Study subjects	25,790 ACHD patients from CONCOR / TCCCA / UZ Leuven registry → 157 SCD cases (arrhythmic death) & matched controls by age, sex, congenital defect, surgical repair
Objectives & Method	To validate ACHD-ICD guidelines (2014 PACE/HRS consensus statement, 2015 ESC guidelines) → Assessed diagnostic accuracy of primary prevention ICD recommendations in case-control design

ICD	2014 PA	CE/HRS	201	5 ESC	A Consensus Statement B ESC Guidelines
Indications	Sensitivity	Specificity	Sensitivity	Specificity	0.8-
Class I	12 (7–19)	98 (95–99)	15 (10–21)	97 (94–99)	<u>≥ 0.6-</u>
Class Ila	39 (22–59)	76 (63–86)	34 (18–54)	73 (60–84)	unsitiv
Class IIb (1)	16 (10–24)	92 (88–95)	15 (10–22)	92 (88–95)	
Class IIb (2)	35 (26–44)	86 (81–91)	NA	NA	0.2-
Any indication	41 (32–51)	83 (77–88)	35 (27–43)	85 (80–89)	0.0- AUC: 0.63 (0.58-0.68) 0.0- AUC: 0.61 (0.56-0.65) 1.0 0.8 0.6 0.4 0.2 0.0 1.0 0.8 0.6 0.4 0.2 0.0
				% (95% CI)	Specificity Specificity

Guideline recommendations are not sufficiently risk prediction tools

Vehmeijer JT et al. Circ Arrhythm Electrophysiol. 2017 (PMID 28696220)

Why does ACHD-ICD guidelines have poor discriminative ability?

- Scarcity of data on SCD in ACHD patients
 - Lack of RCTs
 - ACHD-ICD guideline recommendations are based on expert opinion, observational data, and extrapolation from other patient groups (eg. acquired NICMP)
- SCD in ACHD population include marked heterogeneity
 - Prognostic value of any given factor vary widely according to the type of CHD
 - eg. inducible sustained VT in EPS
 - : x5 higher risk of clinical VT or SCD in ToF *vs* no prognostic value in TGA with arterial switch
 - Constant flux from evolving surgical / percutaneous interventions and medical therapies

Risk score model of SCD in ACHD : PREVENTION-ACHD

Risk model development

				Annual r	isk of SCD		
		<1%	1-2%	3-4%	5-10%	11-25%	>25%
Diagnosis							
Eisenmenger syndrome	4	8	16	>25	>25	>25	>25
Cyanotic non-Eisenmenger	3	7	15	>25	>25	>25	>25
Ebstein anomaly	1	2	5	11	23	>25	>25
Fontan circulation	<1	2	5	10	20	>25	NA*
TGA Mustard/Senning repair	<1	2	4	8	17	>25	>25
Congenitally corrected TGA	<1	<1	2	4	9	18	>25
Left sided lesions	<1	<1	2	3	7	15	>25
Tetralogy of Fallot	<1	<1	1	3	6	14	>25
Closed ASD	<1	<1	1	2	5	10	22
	1	2	3 Num	4 ber of risk	5 factors	6	7

- High risk: annual SCD risk $\ge 3\%$
- Low risk: annual SCD risk < 3%
- (1-2%: intermediate risk, <1%: very-low risk)

Model performance Sensitivity : 0.5 (0.25*) Specificity : 0.93 (0.98*) C-statistics : 0.75(95% CI 0.59-0.92) (0.61*)

- KM estimates
- High risk : 7.0%
- Intermediate risk : 0.8%
- Low-risk : 0.3%

* Consensus statement

Vehmeijer JT et al. Heart Rhythm 2021 (PMID 33465514)

Risk Prediction model of SCD in ACHD : SPANISH ACHD

Risk model development

20 year cumulative SCD/SCA incidence

- High-risk > 12%
- Intermediate-risk 4-12%
- Low-risk 1-4%
- Very-low risk < 1%

Compared with current guidelines approach, sensitivity increases 29% with less than 1% change in specificity

Oliver JM et al. Heart 2021 (PMID 32546506)

Comparision of ACHD risk score model

Annual risk of SCD 1-2% 3-4% 11-25% >25% <1% Diagnosis Eisenmenger syndrome 4 16 >25 >25 >25 >25 7 Cyanotic non-Eisenmenger 3 15 >25 >25 >25 >25 2 Ebstein anomaly 1 11 23 >25 >25 Fontan circulation <1 2 5 10 20 NA* >25 2 17 TGA Mustard/Senning repair <1 4 8 >25 >25 Congenitally corrected TGA <1 <1 2 4 9 18 >25 Left sided lesions <1 2 3 7 >25 <1 15 **Tetralogy of Fallot** <1 <1 3 6 14 >25 1 22 Closed ASD <1 2 5 <1 1 2 3 4 5 6 7 Number of risk factors

PREVENTION-ACHD

• Type of CHD

- Coronary artery disease
- NYHA II/III heart failure
- Supraventricular tachycardia
- Systemic ejection fraction <40%
- Sub-pulmonary ejection fraction
 <40%
- QRS duration ≥120ms
- QT dispersion ≥70ms

SPANISH ACHD

• Type of CHD

- Younger age
- Male sex
- Unexplained syncope
- Symptomatic ischemic heart disease
- Non-life threatening ventricular arrhythmia
- QRS duration
- Mod-sev systemic ventricular hypertrophy
- Mod—sev sub-pulmonary ventricular hypertrophy
- Mod-sev dysfunction of either ventricle (EF < 45%)

SCD risk stratification in Tetralogy of Fallot

 1/3 of late deaths in ToF patients occurs due to VA with a prevalence of 2% to 8%

ToF is the largest subgroup of ICD recipients with CHD Yet, overall low incidence of SCD within a population: 0.15% /year

 \rightarrow identifying high-risk patients continues to be a major challenge

Clinical Risk Score for SCD in ToF

	Exp (B)	Point Attributed
Prior palliative shunt	3.2	2
Inducible sustained ventricular tachycardia	2.6	2
QRS >180 ms	1.4	1
Ventriculotomy incision	3.4	2
Nonsustained ventricular tachycardia	3.7	2
Left ventricular end-diastolic pressure \geq 12 mm Hg	4.9	3
TOTAL POINTS		0-12

Time from ICD Implantation (Years)

Risk Category	Ν	Annualized Rate of Appropriate Shocks
Low	18	0.0%
Intermediate	24	3.8%
High	26	17.5%
	Risk Category Low Intermediate High	Risk CategoryNLow18Intermediate24High26

— Low — Intermediate — High

Khairy P *et al*. Circulation 2008 (PMID 18172030) Cohen *et al*. JACC 2021 (PMID 33573746)

SCD risk stratification in Tetralogy of Fallot

Cohen et al. JACC 2021 (PMID 33573746

EPS role in SCD risk stratification

Tetralogy of Fallot

Study subjects

Multicenter, observational cohort 252 rToF patients underwent EPS

Results

Inducible sustained VT was a predictor of VT / SCD

Relative risk of inducible VT (vs non-inducible)

: 5.0 for monomorphic VT, 12.9 for polymorphic VT

Transposition of Great Arteries with atrial switch

Study subjects

37 ICD recipients for primary/secondary prevention17 patients underwent EPS

Khairy P et al. Circulation 2004 (PMID 15051640)

Khairy P et al. Circ Arrhythm Electrophysiol. 2008 (PMID 19808416)

SCD risk stratification in TGA

- SCD rate of 10% was found in d-TGA patients after the Mustard operation after 15 years of follow-up
- In d-TGA patients after Arterial switch, SCD is an infrequent event with a prevalence of approximately 1%

Atrial switch operation	Arterial switch operation
 Leave RV as lifelong systemic ventricle : systemic ventricular failure Create surgical scar in atrium (substrate for flutter) : atrial arrhythmia or sinus node dysfunction 	Reduced late SCD events in repaired D-TGA
 Suggested risk factors Longer duration of follow up History of syncope or rapid palpitation Atrial tachycardia Systemic RV dysfunction 	 Mechanism of SCD Denervated coronary arteries Rare events of ventricular dysfunction

SCD risk stratification in single ventricle

- Lack of evidence d/t population heterogeneity & small number of ICD recipients
- Major challenges from limited access when ICD therapy is contemplated
- Supraventricular tachycardias are poorly tolerated & may be linked to VA/SCD
 - Macroreentrant atrial tachycardia is the most common arrhythmia (~50% with old AP Fontan)
 - surgical modifications (lateral tunnel / extra-cardiac conduit) decreased AT incidence <10%

Suggested risk factors of VA/SCD in patients with Fontan circulation

- longer duration of follow-up
- history of syncope or rapid palpitation
- older Fontan technique (atriopulmonary connection)
- atrial tachycardia
- severely reduced single ventricular function

SVT control

SVTs play a role in at least some of SCDs in ACHD

- A potent trigger for thrombus formation
- Poorly tolerated in ACHD, particularly in TGA, Fontan, Ebstein anomaly
- precede or coexist with ventricular tachycardia or trigger to ventricular arrhythmia

Aggressive therapy for SVT should be considered in ACHD

- β-blockers decreased SCD after Mustard/Senning repair of TGA²⁾
- catheter ablation could be useful in some cases

¹⁾ Rhodes LA *et al*. PACE 1995 (PMID 7659551) ²⁾ Khariy P *et al*. Circ Arrhythm Electrophysiol. 2008 (PMID 19808416)

Summary

- SCD risk stratification in ACHD is a multidisciplinary mission
 - SCD is a terminal event with diverse causes and triggers
 - Considerable heterogeneity from diverse congenital defects and operation methods
 - RCTs and large population studies are missing in ACHD population
 - Results from acquired heart diseases are often not conferrable
 - We should try to develop and validate risk score model that can predict SCD more accurately

• Remarkable progress in EP understanding of VT has been made in ToF

- Many risk factors was suggested (age, surgical factors, QRS, ventricular dysfunction)
- Invasive risk stratification including substrate mapping and ablation can be helpful
- Atrial arrhythmia plays a crucial role in VA/SCD in TGA and many other ACHDs

Thank you for your attention

Is ICD helpful in preventing SCD in ACHD?

- < 30% of sudden death are d/t shockable ventricular arrhythmia in general population
- Proportion of shockable SCD is uncertain in ACHD population
- ACHD patients were younger than controls and more often had a shockable initial rhythm

CONCOR & TCCCA registry

N = 25,790 **213 sudden death** (among 1,189 overall death)

Arrhythmic d	eath	Non-arrhythmic death					
171 (80%)	42 (20%)					
Rhythm documen	tation in	Aortic disease	19(9%)				
37(22%)		CVA	8(4%)				
VF and/or VT	<mark>31(84%)</mark>	PE / hemorrhage	8(4%)				
SVT	3(8%)	MI	4(2%)				
brady-arrhythmia	3(8%)	GI bleeding	3(1%)				

<15% of SCD had shockable rhythm

Koyak Z et al. Circulation 2012 (PMID 22991410)

- ICD-related complication are higher in the ACHD.
- Consider ICD-related cost.

CONCOR (ACHD) vs ARREST (general) N = 17,868

Characteristics of ACHD OHCA patients and OHCA cases without ACHD.

	ACHD	No ACHD	р
	n = 62	n = 11,624	
Age, mean \pm SD	47 ± 17	66 ± 15	< 0.001
Male gender, n (%)	41 (66)	8308 (71)	0.416
Initial rhythm, n (%)			0.001
Ventricular fibrillation/tachycardia	40 (65)	4653 (40)	
Pulseless electric activity	11 (18)	3050 (26)	
Asystole	7(11)	3208 (28)	
Undefined, not-shockable/unknown	4 (6)	713 (6)	
Cause of OHCA, n (%)			0.026
Cardiac	47 (76)	6320 (54)	
Trauma	0(0)	351 (3)	
Respiratory or other non-cardiac	5 (8)	1289 (11)	
Unknown	10 (16)	3664 (32)	

Vehmeijer JT et al. Int J Cardiol. 2019 (PMID 30414749)

Risk score model of SCD in ACHD

PREVENTION-ACHD

Study design	Risk score model development by retrospective multicenter case–control study	Diagnosis Eisenmeng Cyanotic ne
Outcome	SCD or VT/VF	Ebstein and Fontan circ
Subjects / N of events	Model design: 25,790 patients / 165 events	TGA Musta Congenital Left sided l
Variables in final model	 Type of CHD Coronary artery disease NYHA II/III heart failure symptom Supraventricular tachycardia Systemic ejection fraction <40% Sub-pulmonary ejection fraction <40% QRS duration ≥120ms OT dispersion ≥70ms 	Tetralogy c Closed ASE • Hig • Low

Diagnosis							
Eisenmenger syndrome	4	8	16	>25	>25	>25	>25
Cyanotic non-Eisenmenger	3	7	15	>25	>25	>25	>25
Ebstein anomaly	1	2	5	11	23	>25	>25
Fontan circulation	<1	2	5	10	20	>25	NA*
ΓGA Mustard/Senning repair	<1	2	4	8	17	>25	>25
Congenitally corrected TGA	<1	<1	2	4	9	18	>25
eft sided lesions	<1	<1	2	3	7	15	>25
Fetralogy of Fallot	<1	<1	1	3	6	14	>25
Closed ASD	<1	<1	1	2	5	10	22
	1	2	3	4	5	6	7
			Num	her of risk	factors		

<1%

1-2%

Annual risk of SCD

5-10%

3-4%

- High risk: annual SCD risk \geq 3%
- Low risk: annual SCD risk < 3%

(1-2%: intermediate risk, <1%: very-low risk)

Vehmeijer JT et al. Heart Rhythm 2021 (PMID 33465514)

Prospective validation of PRVENTION-ACHD risk score

		Α			low vs. high risk: Survival free from SCD or V	/T/VF	В		low vs. high risk: Survival free from SC	D
	PREVENTION-ACHD	ų	100.0%	%- _			10	0.0%		
Study design	Prospective validation by single center f/u	om SCD or VT/V	90.0%	%- Ш	IP 12 5 (05% CI 2 1 4	50.0)	ree from SCD	90.0% -		
Outcome	SCD or VT/VF (primary), SCD alone (secondary)	Survival free fr	80.0%	%- Strati	a 12.3 (3 3 % C1 3.1-,	JU.9)	Survival f	30.0% - St	HR 12.4 (95% CI 1.8	-88.1)
Subjects / N of events	738 patients, 2 years / 8 events High-risk (annual SCD risk ≥3%): 58 Intermediate-risk (1-2%): 365 Low-risk (<1%): 359	Number at Low risk High risk	70.0% risk	- Lov - Hig 0 714 58	w risk sh risk 1 Time (years) 699 55 low vs. intermediate vs. hij Survival free from SCD or V	p < 0.001 2 661 53 gh risk: /T/VF	Number at risk Low risk High risk D	70.0% 0 724 58	Low risk High risk 1 Time (years) 710 56 low vs. intermediate vs. h Survival free from SC	p = 0.001 2 670 55 nigh risk:
Model performance	Sensitivity : 0.5 (0.25*) Specificity : 0.93 (0.98*) C-statistics : 0.75(95% CI 0.59-0.92) (0.61*) KM estimates - High risk : 7.0% - Intermediate risk : 0.8% - Low-risk : 0.3%	Number at Low risk Intermedia High risk	100.0% 90.0% 80.0% 70.0% risk te risk	6 - 5 53 361 58	a w risk ermediate risk th risk Time (years) 346 353 55	p < 0.001 2 323 338 53	Support of the second s	00.0% 00.0% 30.0% 5t 70.0% 0 5t 	rata Low risk Intermediate risk High risk 1 Time (years) 353 357 56	p = 0.003 2 329 341 55

consensus statement

Vehmeijer JT *et al*. Heart Rhythm 2021 (PMID 33465514)

Risk Prediction model of SCD in ACHD : SPANISH ACHD

SPANISH ACHD 0.29 Rastelli procedure Coronary anomaly 0.27 **Lesion stratification** from single-center cohort 0.20 Complex Fallot 0.16 Eisenmenger Study design Risk score development and validation from 0.14 Cyanotic non-repaired multicenter case-control study Specific Lesion 0.11 Fontan 0.10 Atrial switch Outcome SCD or non-fatal SCA 0.09 CCTGA 0.08 Ebstein anomaly Stratification: 3,311 patients / 71 events Subjects / 0.05 Non-complex Fallot N of Model develop: 144 cases /1,501 controls Risk 0.02 Coarctation High events Validation: 63 cases / 786 controls Left-heart lesions Moderate Low Left-to-right shunts Very Low Type of CHD (clustered into four groups) 0.00 **RVOT** lesions 0.0 0.2 0.3 0.4 0.1 Incidence of SCA at 20 years of follow-up Younger age Male sex Unexplained syncope

Variables in final model

- Symptomatic ischemic heart disease
- Non-life threatening ventricular arrhythmia
- ORS duration
- Mod–severe systemic ventricular hypertrophy
- Mod–severe sub-pulmonary ventricular hypertrophy
- Mod–severe dysfunction of either ventricle (EF < 45%)

Type of CHD 20 year cumulative SCD/SCA incidence

•	High-risk	> 12%
•	Intermediate-risk	4-12%

- 1-4% Low-risk < 1%
- Very-low risk

Oliver JM et al. Heart 2021 (PMID 32546506)

Performance of SPANISH ACHD risk score

Compared with current guidelines approach, sensitivity increases 29% with less than 1% change in specificity

Oliver JM et al. Heart 2021 (PMID 32546506)

VT mechanism in TOF

 Great progress in defining the mechanisms contributing to SCD in patients with repaired TOF

- Isthmus dependent monomorphic VT between identified anatomic barriers
- Can be target for effective catheter or surgical ablation

Kriger et al. Circ Arrhythm Electrophysiol. 2022 (PMID 18172030)

Incidence* of SCD in ACHD

	Silka et al.	Gallego et al.	van der Velde et al.	Moore et al.	Lynge et al.	
Study population	Repaired CHD N = 3,589	Repaired CHD ≥18 years N = 936	Repaired / unrepaired CHD N = 4,252	Repaired / unrepaired CHD ≥16 years N = 2,935	Repaired / unrepaired CHD 0–35 years Nationwide	
Study period	1958–1996	1990–2010	2001–2004	2000–2015	2000–2009	
Overall	0.9	2.6	2.7	0.4	0.3	
Repaired tetralogy of Fallot	1.5	1.4	1.3	1.0	0.9	
Complete TGA	4.9	9.5	4.6	-	1.7	
Atrial switch	-	-	3.7	2.4	-	
Arterial switch	-	-	5.4	-	-	
Congenitally corrected TGA	-	25.0	1.8	2.1	-	
Cyanotic heart disease	-	5.4	16.6	-	-	
Eisenmenger syndrome	-	-	17.3	4.8	-	
Non-Eisenmenger	-	5.4	15.5	-	-	
Fontan circulation	-	2.8	4.4	2.1	1.9	
Left-sided lesions	-	-	1.4	-	-	
Ebstein anomaly	-	-	5.1	0.7	5.0	
Ventricular septal defect	0.2	3.6	-	0.2	0.1	
Aortic coarctation	1.3	2.1	-	0.4	0.5	
Atrioventricular septal defect	0.9	1.8	-	1.8	1.0	
Aortic stenosis	5.4	0.0	-	0.0	-	
Pulmonary stenosis	0.3	0.0	-	-	0.3	
Patent ductus arteriosus	0.0	0.0	-	-	-	
Atrial septal defect	0.0	0.0	1.0	0.2	* per 1,000 patient-years	

VA/SCD according to type of CHD

	Supraventricular arrhythmias		Ventricular arrythmias and SCD		Bradycardia				
Type of CHD	AVRT IA	IART/	IART/ EAT AF	Sustained VT	SCD	SND		AV block	
Type of CHD		EAT				Congenital	Acquired	Congenital	Acquired
Secundum ASD		++	++			(+)	+		(+)
Superior sinus venosus defect		++	+				+		
AVSD/primum ASD		++	++	(+)		(+)		(+)	++
VSD		+	(+)	+	(+) ^a				+
Ebstein anomaly	+++	++	+	(+)	++ ^b		++		
TOF		++	++	++	++		+		+
TGA									
Atrial switch		+++	+	++°	+++b		+++		+
Arterial switch		+		+c	(+)		(+)		
ccTGA	++	+	+	(+)	++b			+	++
Fontan operation									
Atriopulmonary connection		+++	++		+ ^b		++		
Intracardiac lateral tunnel		++	+		+b		++		
Extracardiac conduit		+	+		+b		+		
Eisenmenger physiology Incompletely palliated CHD		++	++		++d				