

Conduction System Pacing with a dual chamber implantable cardioverter-defibrillator

Su-yeong Park, MD¹, Myung-Jin Cha MD¹, Min Soo Cho MD¹, Gi-Byoung Nam MD¹, Kee-Joon Choi MD¹ and Jun Kim MD¹

¹Division of Cardiology, Asan Medical Center, Republic of Korea

Korean Heart Rhythm Society COI Disclosure

Su Yeong, Park

The authors have no financial conflicts of interest to disclose concerning the presentation

Disclosure

Relationships with commercial interests:

- Grants/Research Support:
- Consulting Fees:
- Other:

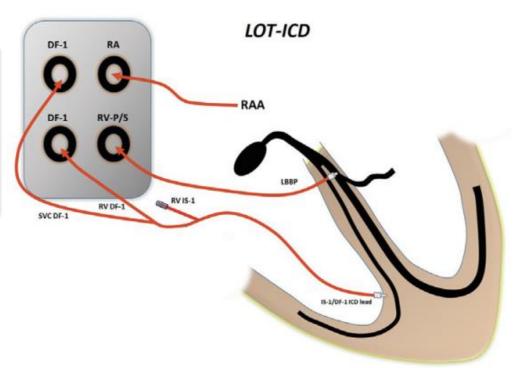
Conduction system pacing (CSP)

2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure

His bundle and left bundle pacing are attractive because they use the intrinsic conduction system.

2021 ESC guidelines on cardiac pacing and cardiac resynchronization therapy

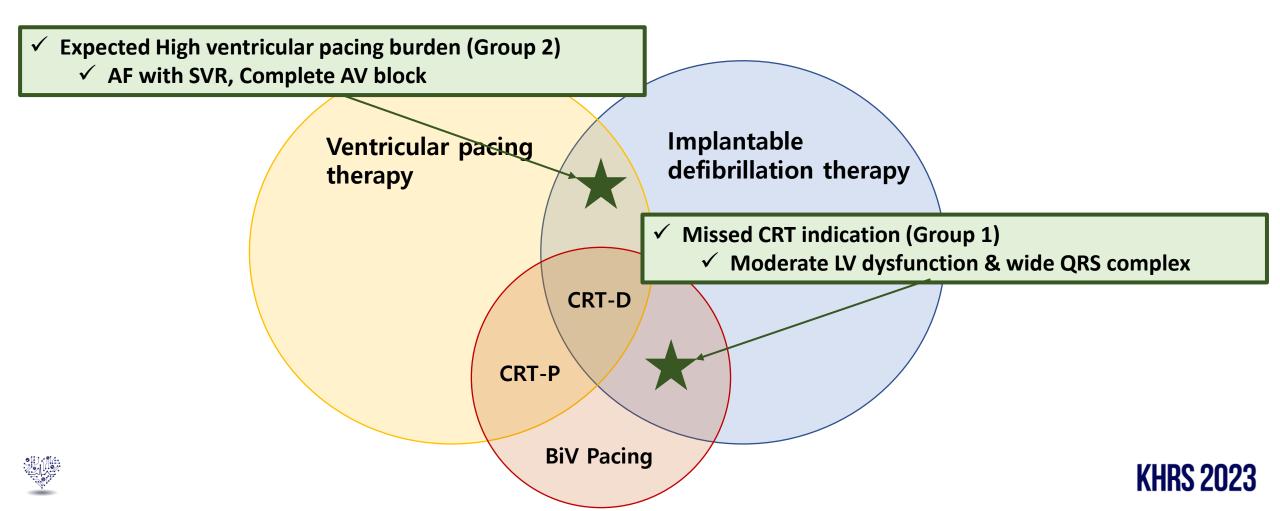
Left bundle area pacing is very promising data on the modality are still scarce, Therefore, recommendations for LBBAP cannot be formulated at this stage.


Conduction system pacing is considered to be beneficial include...

- Fail to place LV lead in CS
- High ventricular pacing burden
- AVN ablation or AF with SVR

Left bundle branch pacing-optimized implantable cardioverter-defibrillator (LOT-ICD) for cardiac resynchronization therapy: A pilot study

✓ LOT-ICD could provide <u>cost-effective cardiac resynchronization therapy</u> without CRT device


- ✓ LBBP was successful in 11 of 19 CRT-D–eligible patients (57.9%)
- ✓ Pacing parameters remained stable during mean follow-up of 13.9 months

Ponnusamy, Shunmuga Sundaram et al. Heart rhythm O2 vol. 3,6Part B 723-727. 16 Dec. 2022,

Background

There is an unmet need for conduction system pacing (CSP) in patients with indication for implantable cardioverter-defibrillator (ICD).

Hypothesis

 Additional CSP with dual chamber ICD would be helpful in selected patients at high risk of pacing induced cardiomyopathy or moderate LV dysfunction with intraventricular conduction delay.

Objectives

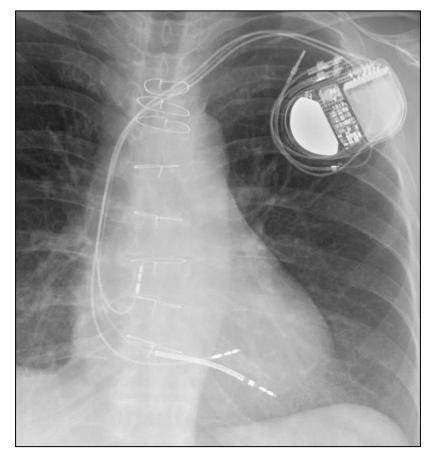
✓ Investigate the feasibility and acute outcome of CSP with a dual chamber ICD.

Methods – Study design

- Single center retrospective study
- From May-2022 to Mar-2023

CSP-ICD was done in patients

- Standard indication for ICD
- Either of the two conditions
 - I. Intra-ventricular conduction delay, manifested as Wide QRS complex (n=4)
 - I. LVEF > 35% and Wide QRS complex \geq 130ms with LBBB (n=2)
 - II. LVEF > 35% and Wide QRS complex > 150ms with non-LBBB (n=2)
 - II. Expected High ventricular pacing burden (n=5)
 - I. Complete AV block (n=2)
 - II. AF with slow ventricular rate or Tachy-brady syndrome (n=3)


Methods – Study design

Procedure

- CSP was performed with stylet-driven lead delivered through a specific designed introducer
- A single coil DF-1 lead was placed in RV apex

Outcomes

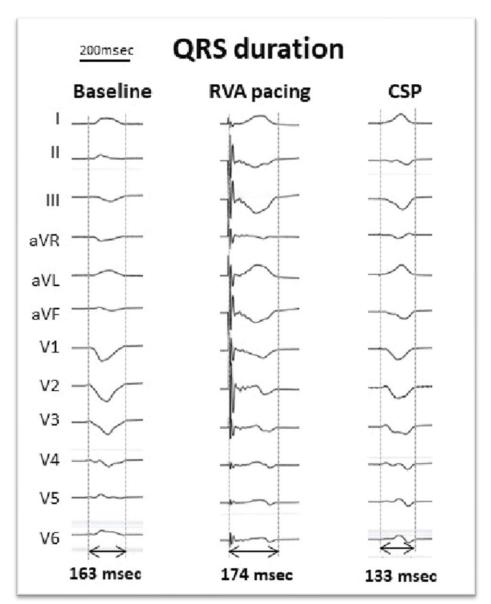
- electronic database
- procedural outcome and complications

CSP-ICD

Result – Baseline characteristics

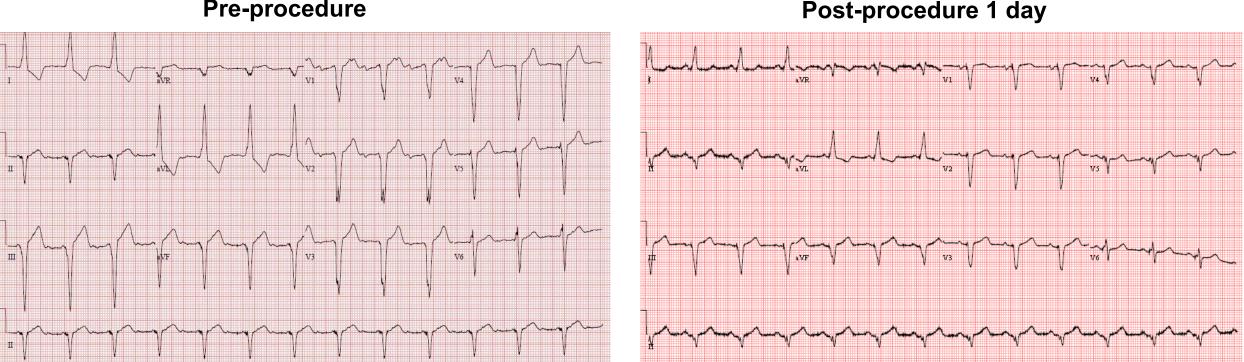
	Total (n=9)
Age	64.2 ± 13.2
Male, n (%)	7 (77.8%)
Hypertension, n (%)	3 (33.3%)
Diabetes mellitus, n (%)	3 (33.3%)
Peripheral artery disease, n (%)	0 (0%)
Stroke, n (%)	0 (0%)
Coronary artery disease, n (%)	1 (11.1%)
Valvular heart disease, n (%)	3 (33.3%)
Chronic kidney disease, n (%)	3 (33.3%)
Atrial fibrillation, n (%)	
Paroxysmal	4 (44.4%)
Persistent	3 (33.3%)
Ventricular tachycardia, n (%)	9 (100%)
LVEF, %	46.8 ± 10.5
Cardiomyopathy, n (%)	
Dilated cardiomyopathy	2 (22.2%)
Ischemic cardiomyopathy	1 (11.1%)
Hypertrophic cardiomyopathy	3 (33.3%)
Infiltrative cardiomyopathy (Fabry, Sarcoidosis)	3 (33.3%)

Result – Procedural outcome


Procedural characteristics				
Procedure time, min	100.8 ± 19.8			
Fluoroscopy time, min (n=10)	15.9 ± 8.2			
Radiation dose, mcgy/m2 (n=10)	1570. ± 954.8			
Complication, n (%)				
Cardiac perforation and tamponage	0 (%)			
Pocket hematoma	1 (11.1%)			
Lead dislodgment	1 (11.1%)			
Infection	0 (%)			

Result – Procedural outcome

Electrogram (intra-cardiac)	Intraventricular con duction delay (n=4)	Ventricular pacing dependent (n=5)
Baseline QRS width, ms	170.7 ± 22.2	125.8 ± 15.1
RVA pacing QRS width, ms	168.3 ± 12.5	216.7 ± 52.3
CSP QRS width, ms	148.5 ± 15.1	182.0 ± 74.0
V pacing, %	77.7 ± 42.5	98.7 ± 1.3



Result – 12 lead Electrocardiogram

Pre-procedure

52/F HCMP s/p septal myectomy, Non sustained VT (ICD indication) LBBB pattern with wide QRS, LVEF 51%

Result – Electronic database outcomes

	Total (n=9)	Intraventricular conduction delay (n=4)	Ventricular pacing dependent (n=5)			
Measurement at 1 day follow-up						
Paced QRS duration, ms	161.7 ± 20.1 (n=8)	150.7 ± 21.2 (n=3)	168.4 ± 18.4 (n=5)			
Sensing voltage, mV	14.7 ± 7.8 (n=6)	19.3 ± 3.0 (n=3)	10.0 ± 8.8 (n=3)			
Threshold, V @ ms	0.84 ± 0.33	0.68 ± 0.13	0.98 ± 0.40			
Impedance, Ohms	764.3 ± 178.9	683.2 ± 218.5	829.2 ± 128.0			
Measurement at 1 month fo	llow-up					
Paced QRS duration, ms	146.2 ± 18.3	147.0 ± 21.3	145.5 ± 18.1 (n=4)			
Sensing voltage, mV	14.1 ± 8.4 (n=8)	18.2 ± 10.4 (n=3)	11.7 ± 7.1			
Threshold, V @ ms	0.72 ± 0.22	0.74 ± 0.34	0.70 ± 0.10			
Impedance, Ohms	676.8 ± 119.9	696.2 ± 171.1	661.2 ± 78.2			

KHRS 2023

QRS duration measured on surface 12 lead electrogram

Conclusion

- CSP-ICD is a feasible and may be an alternative strategy in patients, who plan to implant ICD and have moderate left ventricular dysfunction with wide QRS complex or high risk of pacing-induced cardiomyopathy.
- ✓ Further large-scale randomized trials are necessary.

