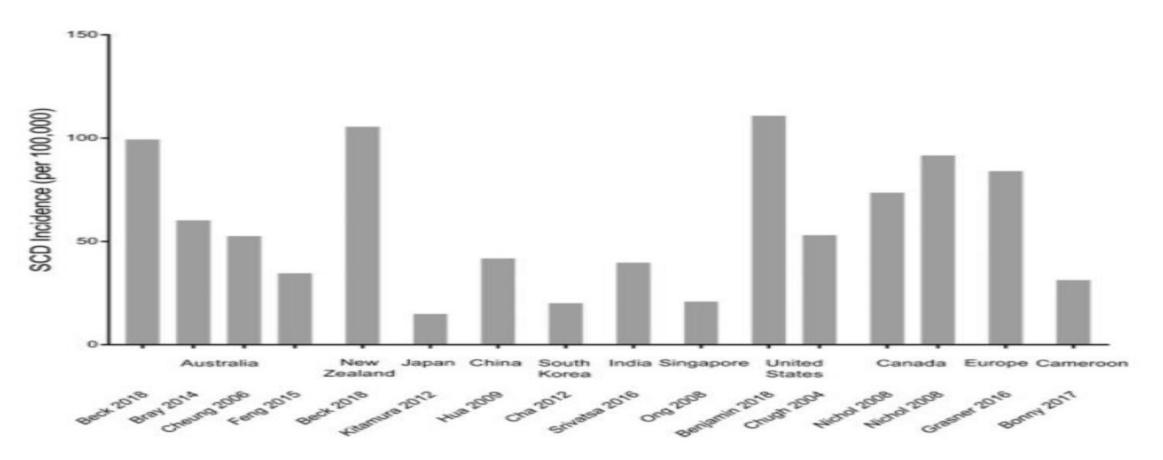


Clinical Significance of T Wave Alternance and Heart Rate Turbulence

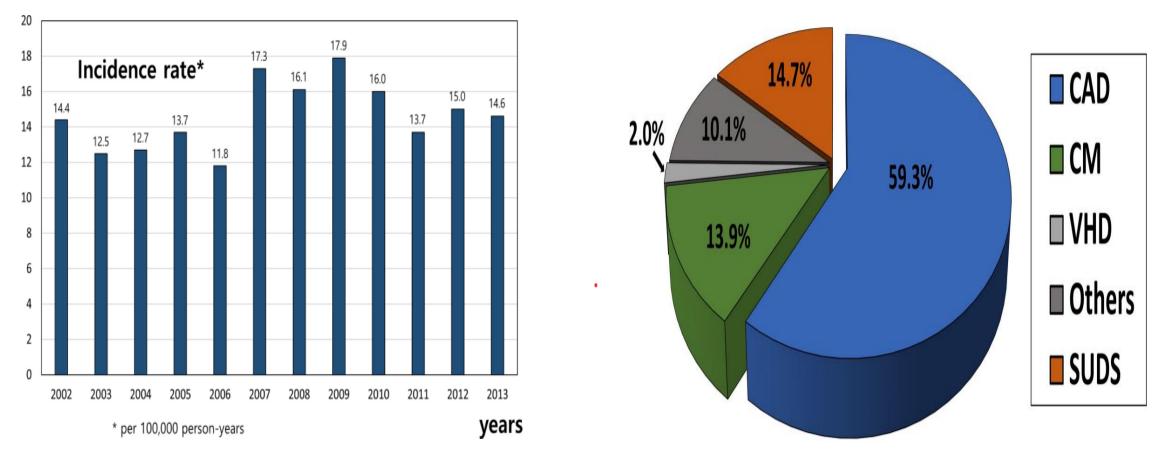
Park Young Jun

Yonsei University Wonju College of Medicine, Republic of Korea

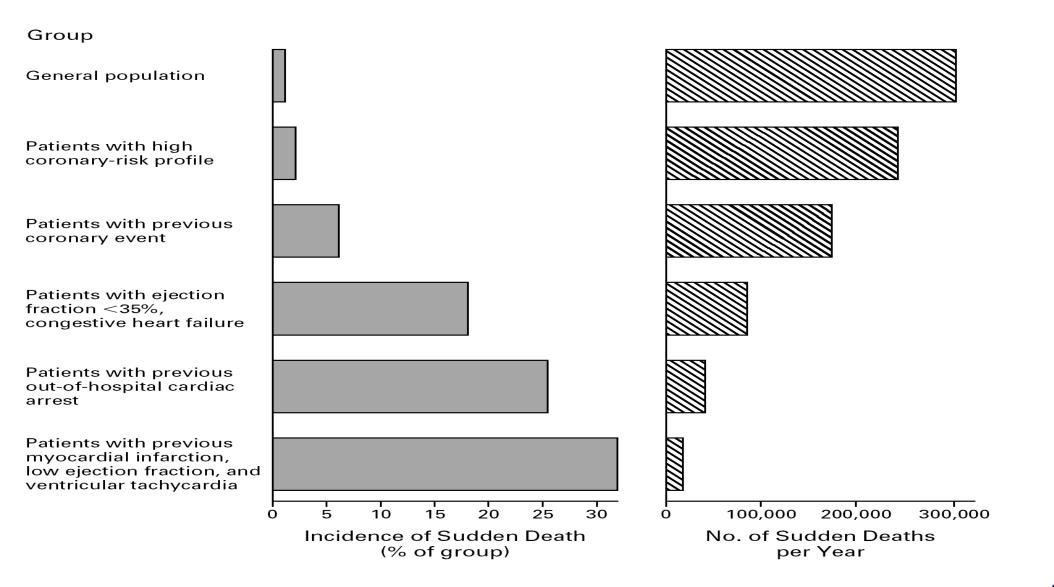
Korean Heart Rhythm Society COI Disclosure


Park Young Jun

The authors have no financial conflicts of interest to disclose concerning the presentation

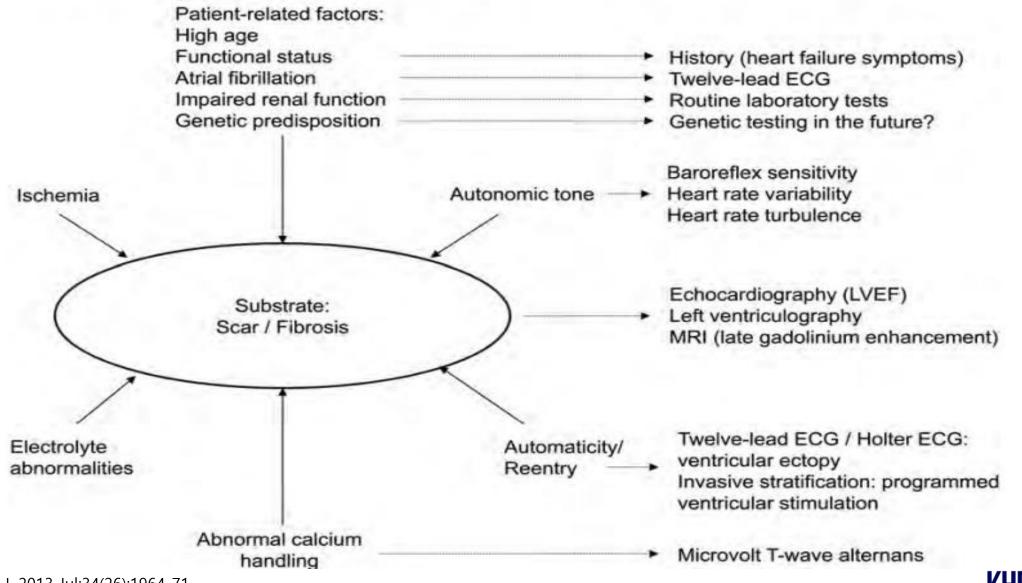

Global incidence of SCD

- Sudden cardiac death (SCD) is a leading cause of mortality
- SCD the cause of 15–20% of death.


Sudden cardiac death in Korea

- The incidence of primary SCA was 16.1 per 100,000 person-years
- CAD was the most common cause of SCA (59.3%)
- Sudden unexplained death syndrome accounted for 14.7% of SCA.

SCD Incidence & Prevalence

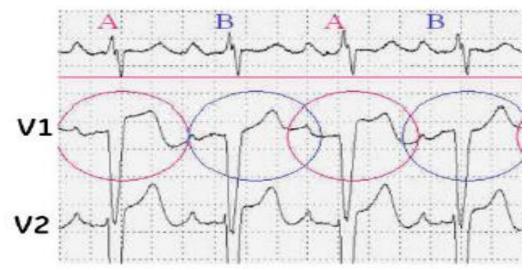

Myerburg, et al. Circ 1998;97:1514-1521

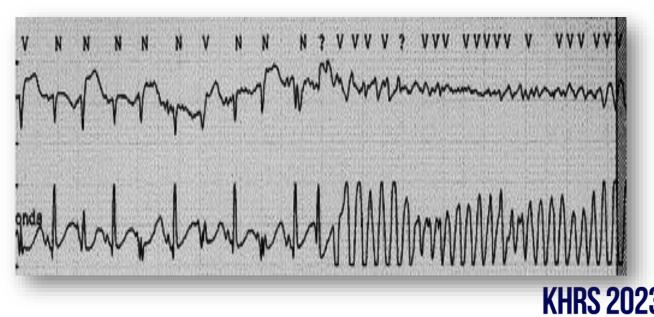
Ejection fraction(EF) is not a good predictor of SCD

	Sabbag et al. ³³	van Welsenes et al ³⁰	Aonuma et al. ³⁷	Kabutoya et al. ⁵¹	Kotake et al. ³¹	Yokoshiki et al. ³⁶	Cho et al. ⁴
n	2,349	2,134	171	392	985	17,564	305
Year	2015	2011	2022	2021	2021	2020	2020
Country	Israel	the Netherlands	Japan	Japan	Japan	Japan	Korea
Primary/secondary, %	75/25	61/39	100/0	42/58	54/46	26/74	55/45
ICM/NICM, %	84/16	70/30	42/58	100/0	42/58	36/64	43/57
Appropriate ICD therapy/ ICD shock	3.9/1.1 (1 y)	37 (5 y)/20 (5 y)	10 (24 mo)/NA	20 (20 mo)/9 (20 mo)	22 (36 mo)/NA	NA	18/12 (31 mo)

SCD prediction factors

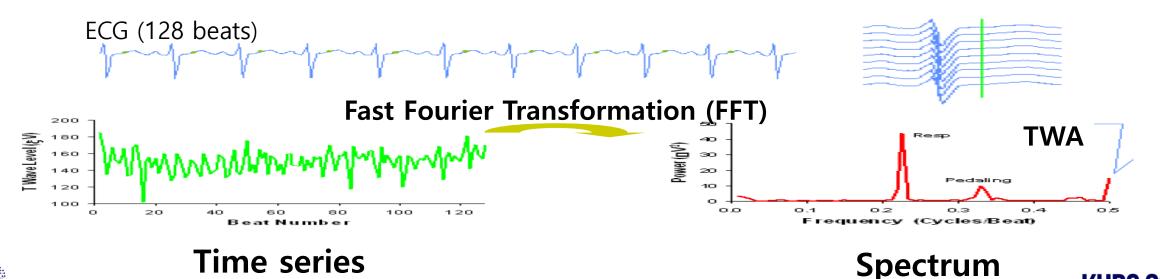
Eur Heart J. 2013 Jul;34(26):1964-71

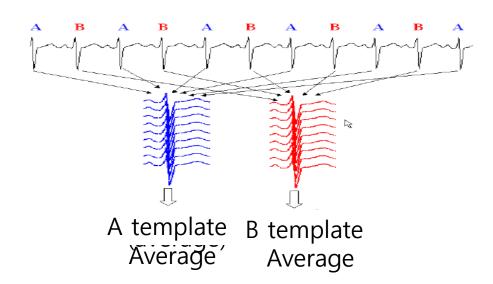

T wave alternans?

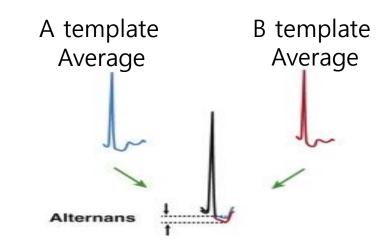


T-Wave Alternans(TWA)?

- Beat-to-beat variability in the timing, shape, and/or amplitude of Twaves on the surface ECG
- Indicator of cardiac electrical instability, vulnerability of VT/VF
- Used for SCD risk stratification




The Spectral Method

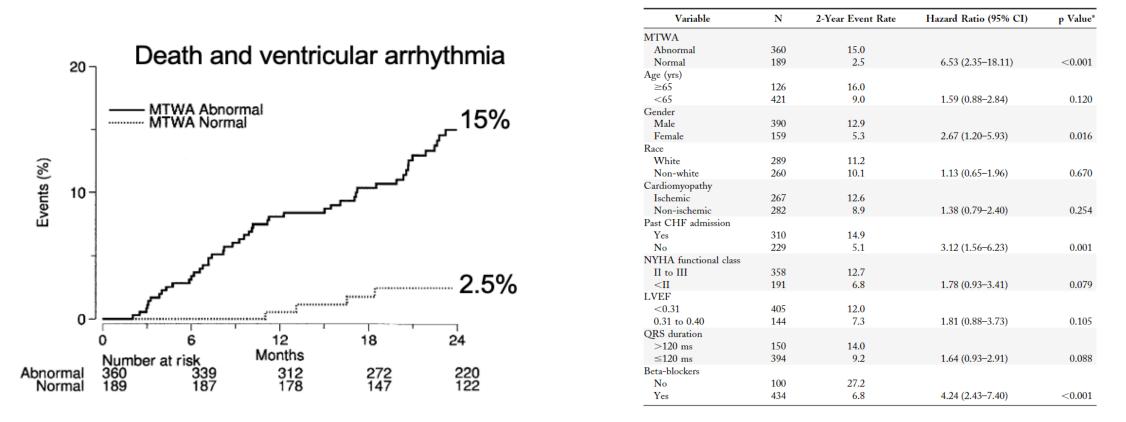

- Target HR 105-110 beats using specialized exercise protocol, pharmacological agents or atrial pacing.
- Fast fourirer transform(FFT) technique to beat- to beat series of amplitude measurements along the 128 consecutive QRS ECG complexes

Modified Moving Average (MMA) Method

- Continuously streams odd and even beats into separate bins and creates median complexes.
- These complexes are then superimposed, and the maximum difference between the odd and even median complexes at any point within the JT segment

Risk stratification of patients with ICMP

:2883 patients without history of previous ventricular tachyarrhythmias

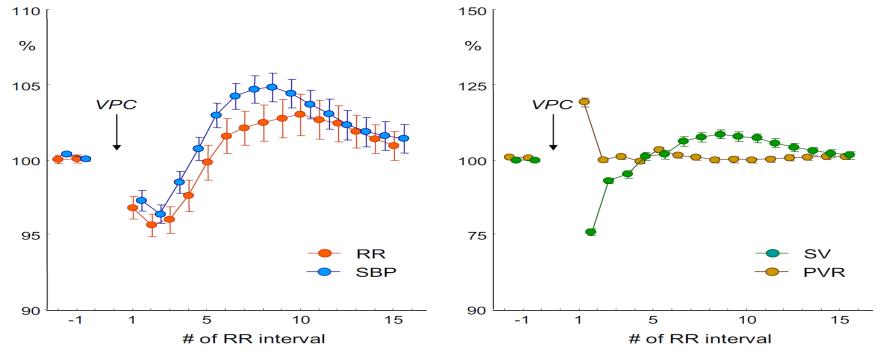

Patients with an IVFF < 0.35

- 514 (67%) patients with a non-negative MTWA test
- Non-negative MTWA test was associated with a significantly higher risk for all-cause death
- Non-negative MTWA test was also associated with a higher risk for all-cause mortality in patients with low EF .

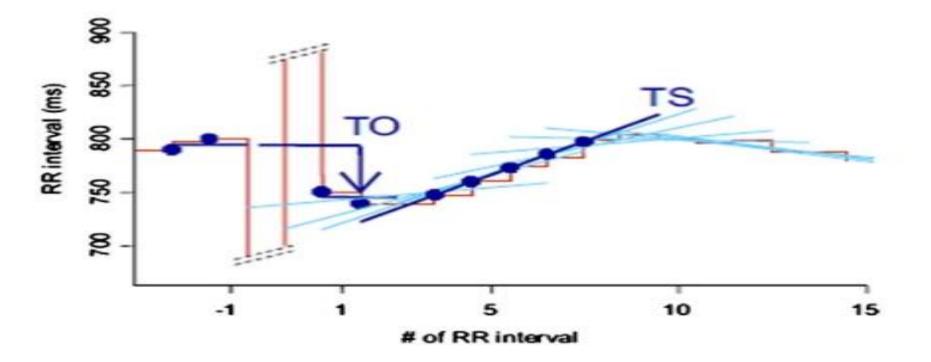
Risk stratification of patients with HFrEF

:549 patients with HF EF<40%, EF 25%

- Event rate was 15.0% in the patients with an abnormal MTWA and 2.5% in those with a normal
- MTWA was an good risk predictor of Death or ventricular arrhythmia


Heart rate turbulence?

Heart rate turbulence(HRT)


- Short-term fluctuations in sinus RR interval after VPC
- Indirect assessment of Cardiac Autonomic Function

Turbulence onset(TO), Turbulence slope(TS)

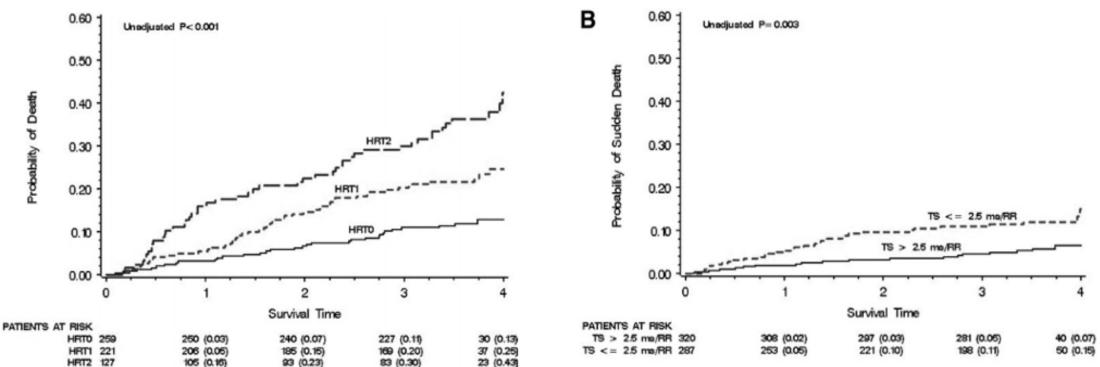
The values of TO > 0% and TS < 2.5 ms/RR interval were defined abnormal, respectively

HRT predict CV death in patients with AMI

:481 patients with AMI

Variable		Alive $(n = 432)$		p Value (alive vs CV death)	
No. of Subj	No. of Subjects	Mean ± SD	No. of Subjects	Median ± SD	
то	359	-0.0067 ± 0.0220	44	0.0011 ± 0.0160	0.024
TS	359	3.86 ± 5.29	44	2.96 ± 3.40	< 0.001
LVEF (%)	432	35 ± 6	49	32 ± 8	0.001
>30	344	80%	29	59%	
≤30	88	20%	20	41%	
SDNN (ms)	414	84 ± 40	48	78 ± 48	NS
VPC (total)	432	Median 16 (interquartile range 100)	49	61 (interquartile range 446)	0.009
VPC/h	432	Median 0.67 (interquartile range 5)	49	2.57 (interquartile range 19)	0.011
Age (yrs)	432	61 ± 16	49	67 ± 16	< 0.001
Men	317	74%	31	63%	
Women	115	26%	18	37%	
Diabetes	99	23%	17	35%	NS

• TS and TO and left ventricular ejection fraction, VPC were independently predicted CV death



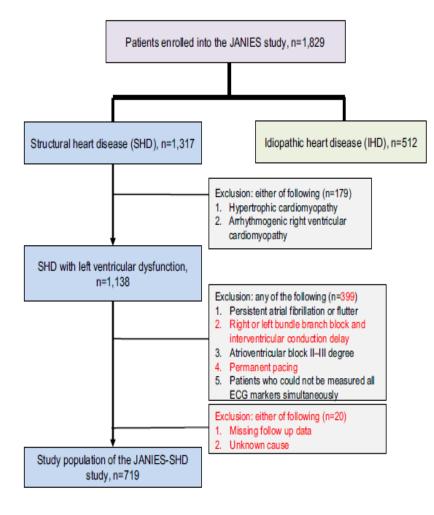
HRT predict death in patients with HF

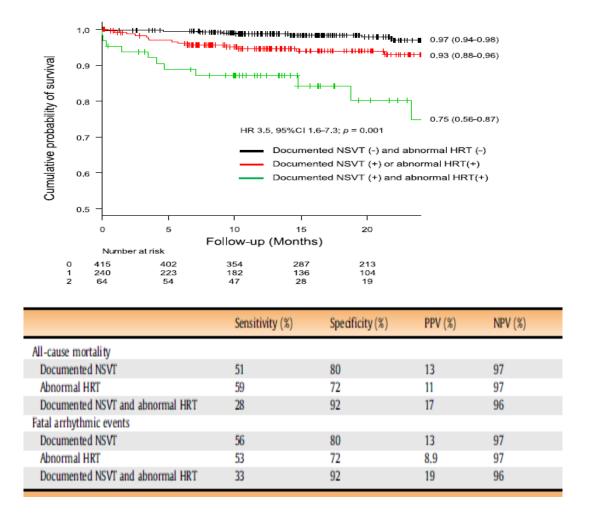
All cause death

:607 patients with HF, EF 37%

Sudden cardiac death

• Abnormal TS and TO were independently associated with increased all-cause mortality, SCD




Recent studies

Risk stratification for cardiac mortality using ECG markers

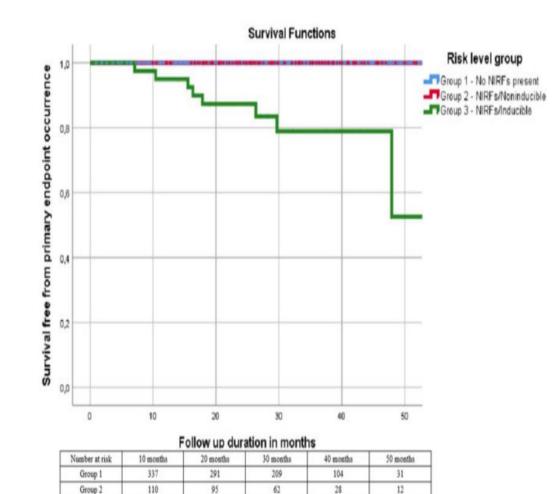
- NSVT and abnormal HRT were significantly associated all cause mortality
- The combined assessment of two ECG markers improved predictive accuracy

J Cardiol. 2020 Feb;75(2):155-163

Arrhythmic risk stratification using multiple factors

Group 3

38


31

1st screening step: NIRFs

- At least one of the following:
- 30 PVCs/hour
- NSVT episode(s) /24hr
- 2/3 positive criteria for LPs
- QTc >440ms(♂) or QTc >450ms (♀),
- Ambulatory T wave alternans (TWA) ≥65µV
- SDNN ≤75ms
- Deceleration Capacity ≤4.5ms AND Heart Rate Turbulence (HRT) Onset ≥0% AND HRT slope ≤2.5ms

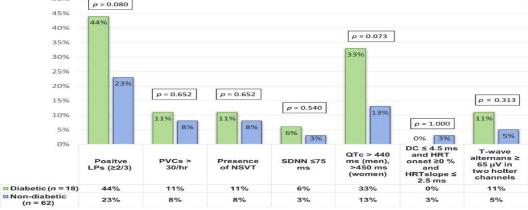
2nd screening step: Invasive assessment

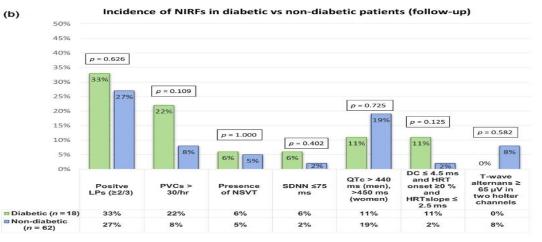
Inducibility upon Programmed Ventricular Stimulation

15

6

2


Temporal changes of risk factors for SCD


(a)

:PRESERVE-EF trial post MI 80 patients with EF \ge 40%

Noninvasive risk factors	First assessment	Second assessment	p-value
LPS			
fQRS (ms) ^a	97 (89, 104)	99 (90, 108)	.4223
LAS (ms) ^a	32 (24, 39)	34 (26, 40)	.3296
RMS µV ^a	36 (17, 69)	28 (15, 69)	.3936
LPS positive (%)	27.5	28.8	.8604
PVCs ^a	12 (2, 139)	19 (2, 343)	.5227
>30 PVCs/hr (%)	8.8	11.3	.5982
NSVT (%)	8.8	5	.3486
SDNN (ms) ^a	127 (108, 148)	128 (112, 154)	.7548
Abnormal SDNN (%)	3.8	3.8	1.0000
QTc (ms) ^b	425 ± 19	426 ± 16	.8853
QTc > 440 ms men, >450 ms women (%)	17.5	17.5	1.0000
TO (%) ^a	-0.02 (-0.04, -0.01)	-0.02 (-0.04, -0.01)	.6720
TS (ms/rri) ^a	9.7 (5.5, 14.9)	8.8 (4.6, 17.4)	.8631
DC (ms) ^a	6.7 (4.75, 8.8)	6.9 (5.1, 8.1)	.8417
Abnormal HR turbu- lence/DC (%)	2.5	3.8	1.0000
T-wave alternans (≥65 μV) (%)	6.3	6.3	1.0000

Incidence of NIRFs in diabetic vs non-diabetic patients (initial assessment)

Current guidelines

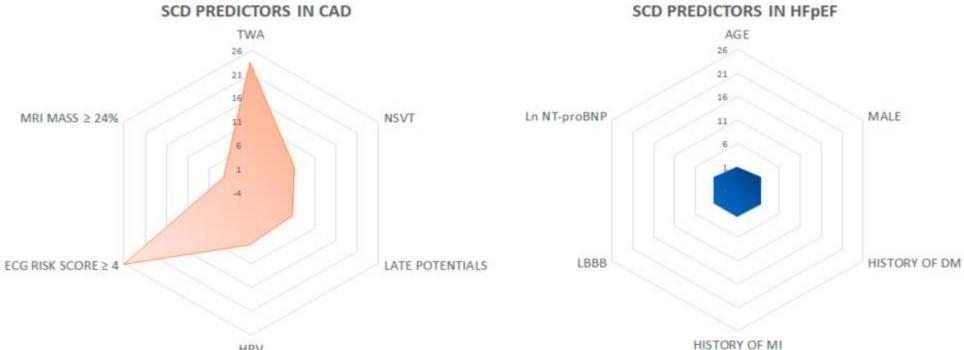
2017 AHA guideline

A 12-lead ECG may indicate the presence of structural heart disease such as prior MI or chamber enlargement that would increase the likelihood that a patient's symptoms might be due to VA, or it may provide evidence of the underlying substrate for documented VA. An ECG may also reveal evidence of inherited arrhythmia disorders, such as long QT syndrome, Brugada syndrome, and arrhythmogenic right ventricular cardiomyopathy. In patients with structural heart disease, QRS duration and the presence of conduction abnormalities provide prognostic information.54.2.1-7-54.2.1-14 Data on the use of microvolt T wave alternans and the signal averaged ECG are inconclusive, as such these tests are not routinely used in clinical practice^{54.2.1-15-54.2.1-19}; the one exception is the potential use of signal averaged ECG in patients with arrhythmogenic right ventricular cardiomyopathy (see Section 7.3).

2022 ESC guideline

5.1.3. Non-invasive and invasive tests

5.1.3.1. Electrocardiogram and ambulatory electrocardiographic monitoring $^{\rm 2}$


The 12-lead ECG is an important tool for the diagnosis of underlying disease, for risk stratification in selected populations, and for the diagnosis of the VA subtype, if captured. Documentation of arrhythmias related to symptoms is clinically pivotal but may be challenging with sporadic events. The type of ECG-monitoring device and the recording time should therefore match the frequency of clinical events. Monitoring over a period of 24–48 h (typically 'Holter recording') is appropriate for daily arrhythmias,¹¹² while intermittent monitoring over a longer period, with patient-activated ECG recorders (or mobile-health/smartphones), should be preferred for infrequent events.¹¹³ Implantable loop recorders (ILR) can be useful in diagnosing arrhythmias in patients with potentially life-threatening symptoms, such as unexplained syncope.¹¹⁴

5.1.3.2. Signal-averaged electrocardiogram

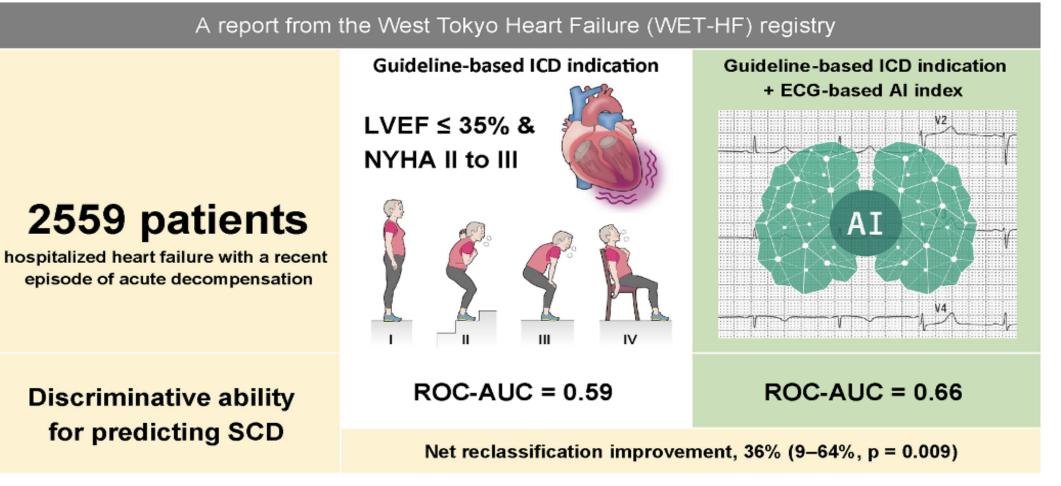
Signal-averaged electrocardiogram (SaECG) can detect very low amplitude signals ('late potentials') in the terminal QRS segment¹¹⁵ using three time-domain measurements: QRS duration, low-amplitude (<40 μ V) signal duration and root mean square voltage of terminal 40 ms QRS.¹¹² Abnormalities in the SaECG can also be assessed by frequency-domain analysis.¹¹² SaECG can contribute to the diagnosis of ARVC.¹¹⁶

Predictors of sudden cardiac death

HRV

CAD SCD PREDICTORS	HR	C.I.	P-value	Reference
TWA	23.5	6.8 - 81.0	< 0.0001	Ikeda et al., JACC, 2006
NSVT	6.2	2.5 - 15.8	0.0001	Ikeda et al., JACC, 2006
LATE POTENTIALS	5.8	2.2 - 15.9	0.0006	Ikeda et al., JACC, 2006
HRV	7.0	2.4 - 20.3	< 0.01	Huikuri et al., Eur Heart J, 2009
ECG RISK SCORE ≥4	26.1	9.9-68.5	< 0.001	Aro et al., Eur Heart J, 2017
MRI MASS≥ 24%	2.42	1.17 - 5.02	0.017	Bello et al., J MRI, 2011

HFPEF SCD PREDICTORS	HR	C.I.	P-value	Reference
AGE	1.03	1.01 - 1.05	0.005	Adabag et al., EJHF, 2014
MALE	1.79	1.35 - 2.38	0.0001	Adabag et al., EJHF, 2014
HISTORY OF DM	1.80	1.35 - 2.40	0.0001	Adabag et al., EJHF, 2014
HISTORY OF MI	1.60	1.20 - 2.13	0.001	Adabag et al., EJHF, 2014
LBBB	1.65	1.11 - 2.45	0.014	Adabag et al., EJHF, 2014
Ln NT-proBNP	1.63	1.45 - 1.83	0.0001	Adabag et al., EJHF, 2014


Trial	Complete Title	Principal Investigator	Study Design	Estimated Enrollment (Patients)	Aim of the Study	Estimated Study Completion Date
PROFID- Preserved	Personalised Risk Score for Implantation of Defibrillators in Patients with Preserved LVEF > 35% and a High Risk for Sudden Cardiac Death	Gerhard Hindricks, MD	Non-commercial, investigator- driven, prospective, parallel-group, randomized, open-label, blinded outcome assessment, multi-center, superiority trial	1440	The objective of the study is to demonstrate that in post-MI patients with preserved LVEF > 35% but high risk for SCD according to a personalized risk score, the implantation of an index group (ICD) is superior to optimal medical therapy (control group) with respect to all-cause mortality.	31 December 2024
ReCONSIDER Study	Arrhythmic Risk Stratification in Nonischemic Dilated Cardiomyopathy	Konstantinos A Gatzoulis, MD	Prospective observational multicenter	675	This trial aim to integrate several approaches to arrhythmic risk stratification in nonischemic dilated cardiomyopathy in patients with preserved LVEF > 35% in a tiered, multifactorial, approach, in which noninvasive risk factors are combined with electrophysiologic studies.	1 May 2025
SMART-MI	Implantable Cardiac Monitors in High-Risk Post-Infarction Patients with Cardiac Autonomic Dysfunction	Axel Bauer, MD; Stefan Kaeaeb, MD	Randomized, interventional trial with parallel assessment	400	There is a large body of evidence that presence of cardiac autonomic dysfunction is associated with an increased susceptibility to malignant brady- and tachyarrhythmias eventually culminating in SCD in post-MI patients with LVEF >35%. SMART-MI will assess the occurrence and prognostic implications of serious arrhythmic events in this newly identified high-risk group by remote monitoring with ICM.	July 2021

Predictors of sudden cardiac death

ECG-based AI algorithm for predicting sudden cardiac death (SCD)

KHRS 2023

Conclusion

- Currently, the predictive power of risk stratification of SCD is not sufficient.
- TWA is an indicator of cardiac electrical instability, predict SCD
- HRT s an indicator of cardiac autonomic function, predict SCD
- In recent studies, TWA and HRT have limitations in predicting SCD by showing high NPV and low PPV.
- SCD prediction using AI or combining various non-invasive risk stratifications is being studied.

Thank you for your attention

